Difference between revisions of "ApCoCoA-1:Alternating groups"
From ApCoCoAWiki
StrohmeierB (talk | contribs) |
|||
Line 37: | Line 37: | ||
Relations:=CreateRelationsAlternating(); | Relations:=CreateRelationsAlternating(); | ||
Gb:=NC.GB(Relations); | Gb:=NC.GB(Relations); | ||
+ | |||
+ | ====Examples in Symbolic Data Format==== | ||
+ | =====Alternating group 3===== | ||
+ | <FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier"> | ||
+ | <vars>a1,a2,a3</vars> | ||
+ | <basis> | ||
+ | <ncpoly>a1^3-1</ncpoly> | ||
+ | <ncpoly>a2^3-1</ncpoly> | ||
+ | <ncpoly>a3^3-1</ncpoly> | ||
+ | <ncpoly>a1*a2*a1*a2-1</ncpoly> | ||
+ | <ncpoly>a1*a3*a1*a3-1</ncpoly> | ||
+ | <ncpoly>a2*a1*a2*a1-1</ncpoly> | ||
+ | <ncpoly>a2*a3*a2*a3-1</ncpoly> | ||
+ | <ncpoly>a3*a1*a3*a1-1</ncpoly> | ||
+ | <ncpoly>a3*a2*a3*a2-1</ncpoly> | ||
+ | </basis> | ||
+ | <Comment>Alternating_group_3</Comment> | ||
+ | </FREEALGEBRA> |
Revision as of 16:51, 6 March 2014
Description
The alternating groups is the group of all even permutations of a finite set. Every alternating group is a subgroups of the correspondent symmetric group. A finite representation is given by:
A_{n+2} = <x_{1},..x_{n} | x_{i}^{3} = (x_{i}x_{j})^2 = 1 for every i != j>
Reference
PRESENTATIONS OF FINITE SIMPLE GROUPS: A COMPUTATIONAL APPROACH R. M. GURALNICK, W. M. KANTOR, M. KASSABOV, AND A. LUBOTZKY
Computation
/*Use the ApCoCoA package ncpoly.*/ // Number of alternating group MEMORY.N:=3; Use ZZ/(2)[a[1..MEMORY.N]]; NC.SetOrdering("LLEX"); Define CreateRelationsAlternating() Relations:=[]; // add the relation a_{i}^{3} = 1 For Index0 := 1 To MEMORY.N Do Append(Relations,[[a[Index0]^3],[1]]); EndFor; // add the relation (a_{i}a_{j})^2 = 1 for every i != j For Index1 := 1 To MEMORY.N Do For Index2 := 1 To MEMORY.N Do If (Index1 <> Index2) Then Append(Relations,[[a[Index1],a[Index2],a[Index1],a[Index2]],[1]]); EndIf; EndFor; EndFor; Return Relations; EndDefine; Relations:=CreateRelationsAlternating(); Gb:=NC.GB(Relations);
Examples in Symbolic Data Format
Alternating group 3
<FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier"> <vars>a1,a2,a3</vars> <basis> <ncpoly>a1^3-1</ncpoly> <ncpoly>a2^3-1</ncpoly> <ncpoly>a3^3-1</ncpoly> <ncpoly>a1*a2*a1*a2-1</ncpoly> <ncpoly>a1*a3*a1*a3-1</ncpoly> <ncpoly>a2*a1*a2*a1-1</ncpoly> <ncpoly>a2*a3*a2*a3-1</ncpoly> <ncpoly>a3*a1*a3*a1-1</ncpoly> <ncpoly>a3*a2*a3*a2-1</ncpoly> </basis> <Comment>Alternating_group_3</Comment> </FREEALGEBRA>