Difference between revisions of "ApCoCoA-1:Other2 groups"
From ApCoCoAWiki
Line 14: | Line 14: | ||
/*Use the ApCoCoA package ncpoly.*/ | /*Use the ApCoCoA package ncpoly.*/ | ||
− | |||
Use ZZ/(2)[a,b]; | Use ZZ/(2)[a,b]; | ||
NC.SetOrdering("LLEX"); | NC.SetOrdering("LLEX"); | ||
+ | |||
Define CreateRelationsOther2() | Define CreateRelationsOther2() | ||
Relations:=[]; | Relations:=[]; | ||
Line 23: | Line 23: | ||
Append(Relations,[[a,a],[1]]); | Append(Relations,[[a,a],[1]]); | ||
Append(Relations,[[b,b,b],[1]]); | Append(Relations,[[b,b,b],[1]]); | ||
− | + | ||
− | Append(Relations,[[a,b,a,b,a,b,a,b | + | // add the relation (abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1 |
+ | Append(Relations,[[a,b,a,b,a,b,a,b^2,a,b^2,a,b,a,b^2,a,b^2,a,b,a,b,a,b,a,b^2,a,b^2,a,b,a,b^2,a,b^2],[1]]); | ||
+ | |||
Return Relations; | Return Relations; | ||
EndDefine; | EndDefine; |
Revision as of 09:59, 23 September 2013
Description
The first group is called Rosenberger-Monster and is the largest finite generalized triangle group. A finite representation of G is given below:
G = <a,b | a^2 = b^3 = (abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1>
The second group is already infinite and denoted by H:
H = <a,b | a^2 = b^3 = (abababab^{2}abab^{2}ab^{2})^2 = 1>
Reference
On the Rosenberger Monster Robert Fitzgerald Morse, Department of Electrical Engineering and Computer Science, University of Evansville IN 47722 USA
Computation of G
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a,b]; NC.SetOrdering("LLEX"); Define CreateRelationsOther2() Relations:=[]; // add the relations a^2 = b^3 = 1 Append(Relations,[[a,a],[1]]); Append(Relations,[[b,b,b],[1]]); // add the relation (abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1 Append(Relations,[[a,b,a,b,a,b,a,b^2,a,b^2,a,b,a,b^2,a,b^2,a,b,a,b,a,b,a,b^2,a,b^2,a,b,a,b^2,a,b^2],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsOther2(); GB:=NC.GB(Relations,31,1,100,1000);
Computation of H
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a,b]; NC.SetOrdering("LLEX"); Define CreateRelationsOther3() Relations:=[]; // add the relations a^2 = b^3 = 1 Append(Relations,[[a,a],[1]]); Append(Relations,[[b,b,b],[1]]); // add the relation (abababab^{2}abab^{2}ab^{2})^2 = 1 Append(Relations,[[a,b,a,b,a,b,a,b,b,a,b,a,b,b,a,b,b,a,b,a,b,a,b,a,b,b,a,b,a,b,b,a,b,b],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsOther3(); GB:=NC.GB(Relations,31,1,100,1000);