Difference between revisions of "ApCoCoA-1:Baumslag-Gersten groups"
From ApCoCoAWiki
Line 15: | Line 15: | ||
Relations:=[]; | Relations:=[]; | ||
− | // | + | // Add the relations of the inverse elements ac = ca = 1 and bd = db = 1 |
Append(Relations,[[a,c],[1]]); | Append(Relations,[[a,c],[1]]); | ||
Append(Relations,[[c,a],[1]]); | Append(Relations,[[c,a],[1]]); | ||
Line 21: | Line 21: | ||
Append(Relations,[[d,b],[1]]); | Append(Relations,[[d,b],[1]]); | ||
− | // | + | // Add the relation (b^{-1}a^{-1}b)a(b^{-1}a^{-1}b = a^2) |
Append(Relations,[[d,c,b,a,d,c,b],[a^2]]); | Append(Relations,[[d,c,b,a,d,c,b],[a^2]]); | ||
Line 30: | Line 30: | ||
Relations; | Relations; | ||
− | + | -- Enumerate a partial Groebner basis (see NC.GB for more details) | |
− | + | Gb:=NC.GB(Relations,31,1,100,1000); | |
+ | Gb; |
Revision as of 07:20, 23 August 2013
Description
The Baumslag-Gersten groups have a Dehn function growing faster than any fixed iterated tower of exponentials and can be represented as:
BG = <a,b | (b^{-1}a^{-1}b)a(b^{-1}a^{-1}b) = a^{2}>
(Reference: A. N. Platonov, An isoparametric function of the Baumslag-Gersten group. (in Russian.) Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2004, , no. 3, pp. 12–17; translation in: Moscow University Mathematics Bulletin, vol. 59 (2004), no. 3, pp. 12–17 (2005).)
Computation
We enumerate partial Groebner bases for the Baumslag-Gersten groups as follows.
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a,b,c,d]; NC.SetOrdering("LLEX"); Define CreateRelationsBaumslagGersten() Relations:=[]; // Add the relations of the inverse elements ac = ca = 1 and bd = db = 1 Append(Relations,[[a,c],[1]]); Append(Relations,[[c,a],[1]]); Append(Relations,[[b,d],[1]]); Append(Relations,[[d,b],[1]]); // Add the relation (b^{-1}a^{-1}b)a(b^{-1}a^{-1}b = a^2) Append(Relations,[[d,c,b,a,d,c,b],[a^2]]); Return Relations; EndDefine; Relations:=CreateRelationsBaumslagGersten(); Relations; -- Enumerate a partial Groebner basis (see NC.GB for more details) Gb:=NC.GB(Relations,31,1,100,1000); Gb;