Difference between revisions of "ApCoCoA-1:Dicyclic groups"
From ApCoCoAWiki
Line 1: | Line 1: | ||
=== <div id="Dicyclic_groups">[[:ApCoCoA:Symbolic data#Dicyclic_groups|Dicyclic groups]]</div> === | === <div id="Dicyclic_groups">[[:ApCoCoA:Symbolic data#Dicyclic_groups|Dicyclic groups]]</div> === | ||
==== Description ==== | ==== Description ==== | ||
− | + | The dicyclic groups are non-abelian groups with order 4n. For n = 2 the dicyclic group is isomporphic to the quarternion group Q. | |
− | + | Note that every element of this groups can be written uniquely as a^k x^j for 0 < k < 2n and j = 0 or 1. | |
Dic(n) = <a,b | a^{2n} = 1, a^{n} = b^{2}, b^{-1}ab = a^{-1}> | Dic(n) = <a,b | a^{2n} = 1, a^{n} = b^{2}, b^{-1}ab = a^{-1}> | ||
− | (Reference: | + | (Reference: Coxeter, H. S. M. (1974), "7.1 The Cyclic and Dicyclic groups", Regular Complex Polytopes, Cambridge University |
==== Computation ==== | ==== Computation ==== |
Revision as of 08:06, 13 August 2013
Description
The dicyclic groups are non-abelian groups with order 4n. For n = 2 the dicyclic group is isomporphic to the quarternion group Q. Note that every element of this groups can be written uniquely as a^k x^j for 0 < k < 2n and j = 0 or 1.
Dic(n) = <a,b | a^{2n} = 1, a^{n} = b^{2}, b^{-1}ab = a^{-1}>
(Reference: Coxeter, H. S. M. (1974), "7.1 The Cyclic and Dicyclic groups", Regular Complex Polytopes, Cambridge University
Computation
/*Use the ApCoCoA package ncpoly.*/ // Number of Dicyclic group (note that the order is 4N) MEMORY.N:=5; Use ZZ/(2)[a,b,c,d]; NC.SetOrdering("LLEX"); Define CreateRelationsDicyclic() Relations:=[]; // add the relations of the invers elements ac = 1 and bd = 1 Append(Relations, [[a,c],[-1]]); Append(Relations, [[c,a],[-1]]); Append(Relations, [[b,d],[-1]]); Append(Relations, [[d,b],[-1]]); // add the relation a^{n} = b^2 Append(Relations, [[a^(MEMORY.N)], [-b,b]]); // add the relation a^{2n} = 1 Append(Relations, [[a^(2*MEMORY.N)], [-1]]); // add the relation bab^{-1} = a^{-1} Append(Relations, [[b,a,d],[-c]]); Return Relations; EndDefine; Relations:=CreateRelationsDicyclic(); Relations; GB:=NC.GB(Relations); GB;
// Second Implementation without invers elements
/*Use the ApCoCoA package ncpoly.*/ // Number of Dicyclic group (note that the order is 4N) MEMORY.N:=5; Use ZZ/(2)[a,b,c,d]; NC.SetOrdering("LLEX"); Define CreateRelationsDicyclic() Relations:=[]; // add the relation a^{n} = b^2 Append(Relations, [[a^(MEMORY.N)], [-b,b]]); // add the relation a^{2n} = 1 Append(Relations, [[a^(2*MEMORY.N)], [-1]]); // add the relation b^{-1}ab = a^{-1} Append(Relations, [[b^(3),a,b],[a^(2*MEMORY.N-1)]]); Return Relations; EndDefine;