Difference between revisions of "ApCoCoA-1:NC.LW"
Line 17: | Line 17: | ||
</itemize> | </itemize> | ||
<example> | <example> | ||
− | + | USE QQ[x[1..2]]; | |
− | F:=[[1, | + | F:= [[x[1]^2], [2x[1],x[2]], [3x[2],x[1]],[4x[2]^2]]; -- x[1]^2+2x[1]x[2]+3x[2]x[1]+4x[2]^2 |
− | NC.LW(F); -- | + | NC.SetOrdering(<quotes>LLEX</quotes>); |
− | + | NC.LW(F); | |
+ | |||
+ | [x[1]^2] | ||
+ | ------------------------------- | ||
+ | -- Done. | ||
+ | ------------------------------- | ||
+ | NC.SetOrdering(<quotes>LRLEX</quotes>); | ||
+ | NC.LW(F); | ||
+ | |||
+ | [x[2]^2] | ||
+ | ------------------------------- | ||
+ | -- Done. | ||
------------------------------- | ------------------------------- | ||
NC.SetOrdering(<quotes>ELIM</quotes>); | NC.SetOrdering(<quotes>ELIM</quotes>); | ||
− | NC.LW(F); | + | NC.LW(F); |
− | + | ||
+ | [x[1]^2] | ||
+ | ------------------------------- | ||
+ | -- Done. | ||
+ | ------------------------------- | ||
+ | NC.SetOrdering(<quotes>DEGRLEX</quotes>); | ||
+ | NC.LW(F); | ||
+ | |||
+ | [x[1]^2] | ||
------------------------------- | ------------------------------- | ||
− | |||
</example> | </example> | ||
</description> | </description> |
Revision as of 17:52, 3 May 2013
NC.LW
The leading word (or term) of a non-zero polynomial in a non-commutative polynomial ring.
Syntax
NC.LW(F:LIST):LIST NC.LT(F:LIST):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
Please set non-commutative polynomial ring (via the command Use) and word ordering (via the function NC.SetOrdering) before calling this function. The default word ordering is the length-lexicographic ordering ("LLEX"). For more information, please check the relevant commands and functions.
@param F: a non-zero non-commutative polynomial. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial 0 is represented as the empty LIST [].
@return: a LIST, which is the leading word of F with respect to the current word ordering.
Example
USE QQ[x[1..2]]; F:= [[x[1]^2], [2x[1],x[2]], [3x[2],x[1]],[4x[2]^2]]; -- x[1]^2+2x[1]x[2]+3x[2]x[1]+4x[2]^2 NC.SetOrdering(<quotes>LLEX</quotes>); NC.LW(F); [x[1]^2] ------------------------------- -- Done. ------------------------------- NC.SetOrdering(<quotes>LRLEX</quotes>); NC.LW(F); [x[2]^2] ------------------------------- -- Done. ------------------------------- NC.SetOrdering(<quotes>ELIM</quotes>); NC.LW(F); [x[1]^2] ------------------------------- -- Done. ------------------------------- NC.SetOrdering(<quotes>DEGRLEX</quotes>); NC.LW(F); [x[1]^2] -------------------------------
See also