Difference between revisions of "ApCoCoA-1:NC.IsGB"
Line 38: | Line 38: | ||
<see>Use</see> | <see>Use</see> | ||
<see>NC.GB</see> | <see>NC.GB</see> | ||
+ | <see>NC.LW</see> | ||
<see>NC.RedGB</see> | <see>NC.RedGB</see> | ||
<see>NC.SetOrdering</see> | <see>NC.SetOrdering</see> |
Revision as of 18:42, 30 April 2013
NC.IsGB
Check whether a LIST of non-zero polynomials is a Groebner basis in a non-commutative polynomial ring.
Note that, given a word ordering, a set of non-zero polynomials G is called a Groebner basis of with respect to this ordering if the leading word set LW{G} generates the leading word ideal LW(<G>). This function checks whether a given finite set of non-zero polynomial G is a Groebner basis by using the Buchberger Criterion, i.e. G is a Groebner basis if the S-polynomials of all obstructions of G have the zero normal remainder with respect to G.
Syntax
NC.IsGB(G:LIST):BOOL
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
Please set non-commutative polynomial ring (via the command Use) and word ordering (via the function NC.SetOrdering) before calling this function. The default word ordering is the length-lexicographic ordering ("LLEX"). For more information, please check the relevant commands and functions.
@param G: a LIST of non-zero non-commutative polynomials. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial 0 is represented as the empty LIST [].
@return: a BOOL, which is True if G is a Groebner basis with respect to the current ordering and False otherwise.
Example
NC.SetX(<quotes>xyt</quotes>); F1 := [[1,<quotes>xx</quotes>], [-1,<quotes>yx</quotes>]]; F2 := [[1,<quotes>xy</quotes>], [-1,<quotes>ty</quotes>]]; F3 := [[1,<quotes>xt</quotes>], [-1, <quotes>tx</quotes>]]; F4 := [[1,<quotes>yt</quotes>], [-1, <quotes>ty</quotes>]]; G := [F1, F2,F3,F4]; NC.IsGB(G); -- LLEX ordering (default ordering) False ------------------------------- NC.SetOrdering(<quotes>ELIM</quotes>); NC.IsGB(G); False -------------------------------
See also