Difference between revisions of "ApCoCoA-1:NC.IsGB"

From ApCoCoAWiki
Line 4: Line 4:
 
Check whether a LIST of non-zero polynomials is a Groebner basis in a non-commutative polynomial ring.  
 
Check whether a LIST of non-zero polynomials is a Groebner basis in a non-commutative polynomial ring.  
 
<par/>
 
<par/>
Note that, given a word ordering, a set of non-zero polynomials <tt>G</tt> is called a <em>Groebner basis</em> of with respect to this ordering if the leading word set <tt>LT{G}</tt> generates the leading word ideal <tt>LT(&lt;G&gt;)</tt>. This function checks whether a given finite set of non-zero polynomial <tt>G</tt> is a Groebner basis by using the <tt>Buchberger Criterion</tt>, i.e. <tt>G</tt> is a Groebner basis if the <tt>S-polynomials</tt> of all obstructions of <tt>G</tt> have the zero normal remainder with respect to <tt>G</tt>.
+
Note that, given a word ordering, a set of non-zero polynomials <tt>G</tt> is called a <em>Groebner basis</em> of with respect to this ordering if the leading word set <tt>LT{G}</tt> generates the leading word ideal <tt>LT(&lt;G&gt;)</tt>. This function checks whether a given finite set of non-zero polynomial <tt>G</tt> is a Groebner basis by using the <tt>Buchberger Criterion</tt>, i.e. <tt>G</tt> is a Groebner basis if the S-polynomials of all obstructions of <tt>G</tt> have the zero normal remainder with respect to <tt>G</tt>.
 
</short_description>
 
</short_description>
 
<syntax>
 
<syntax>

Revision as of 19:39, 26 April 2013

NC.IsGB

Check whether a LIST of non-zero polynomials is a Groebner basis in a non-commutative polynomial ring.

Note that, given a word ordering, a set of non-zero polynomials G is called a Groebner basis of with respect to this ordering if the leading word set LT{G} generates the leading word ideal LT(<G>). This function checks whether a given finite set of non-zero polynomial G is a Groebner basis by using the Buchberger Criterion, i.e. G is a Groebner basis if the S-polynomials of all obstructions of G have the zero normal remainder with respect to G.

Syntax

NC.IsGB(G:LIST):BOOL

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

Please set non-commutative polynomial ring (via the command Use) and word ordering (via the function NC.SetOrdering) before calling this function. The default word ordering is the length-lexicographic ordering ("LLEX"). For more information, please check the relevant commands and functions.

  • @param G: a LIST of non-zero non-commutative polynomials. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial 0 is represented as the empty LIST [].

  • @return: a BOOL, which is True if G is a Groebner basis with respect to the current ordering and False otherwise.

Example

NC.SetX(<quotes>xyt</quotes>);  
F1 := [[1,<quotes>xx</quotes>], [-1,<quotes>yx</quotes>]];   
F2 := [[1,<quotes>xy</quotes>], [-1,<quotes>ty</quotes>]];  
F3 := [[1,<quotes>xt</quotes>], [-1, <quotes>tx</quotes>]];  
F4 := [[1,<quotes>yt</quotes>], [-1, <quotes>ty</quotes>]];  
G := [F1, F2,F3,F4]; 
NC.IsGB(G); -- LLEX ordering (default ordering)

False
-------------------------------
NC.SetOrdering(<quotes>ELIM</quotes>);
NC.IsGB(G);

False
-------------------------------

See also

Use

NC.GB

NC.RedGB

NC.SetOrdering

NC.TruncatedGB

Introduction to CoCoAServer