Difference between revisions of "ApCoCoA-1:NC.Mul"
Line 16: | Line 16: | ||
</itemize> | </itemize> | ||
<example> | <example> | ||
− | + | USE ZZ/(31)[x[1..2],y[1..2]]; | |
− | + | F1:= [[2x[1],x[2]], [13y[2]], [5]]; -- 2x[1]x[2]+13y[2]+5 | |
− | NC. | + | F2:= [[2y[1],y[2]], [19y[2]], [2]]; -- 2y[1]y[2]+19y[2]+2 |
− | + | NC.Mul(F1,F2); | |
− | + | ||
− | + | [[4x[1], x[2], y[1], y[2]], [7x[1], x[2], y[2]], [4x[1], x[2]], [-5y[2], y[1], y[2]], [10y[1], y[2]], [-y[2]^2], [-3y[2]], [10]] | |
------------------------------- | ------------------------------- | ||
− | F1 | + | NC.Mul(F2,F1); |
− | + | ||
− | + | [[4y[1], y[2], x[1], x[2]], [7y[2], x[1], x[2]], [4x[1], x[2]], [-5y[1], y[2]^2], [10y[1], y[2]], [-y[2]^2], [-3y[2]], [10]] | |
− | [[2 | ||
------------------------------- | ------------------------------- | ||
− | NC. | + | NC.Mul([],F1); |
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[ ] | [ ] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
------------------------------- | ------------------------------- | ||
</example> | </example> |
Revision as of 17:39, 3 May 2013
NC.Mul
Multiplication of two polynomials in a non-commutative polynomial ring.
Syntax
NC.Mul(F1:LIST, F2:LIST):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
Please set non-commutative polynomial ring (via the command Use) and word ordering (via the function NC.SetOrdering) before calling this function. The default word ordering is the length-lexicographic ordering ("LLEX"). For more information, please check the relevant commands and functions.
@param F1, F2: two non-commutative polynomials, which are left and right operands of multiplication respectively. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial 0 is represented as the empty LIST [].
@return: a LIST which represents the polynomial equal to F1*F2.
Example
USE ZZ/(31)[x[1..2],y[1..2]]; F1:= [[2x[1],x[2]], [13y[2]], [5]]; -- 2x[1]x[2]+13y[2]+5 F2:= [[2y[1],y[2]], [19y[2]], [2]]; -- 2y[1]y[2]+19y[2]+2 NC.Mul(F1,F2); [[4x[1], x[2], y[1], y[2]], [7x[1], x[2], y[2]], [4x[1], x[2]], [-5y[2], y[1], y[2]], [10y[1], y[2]], [-y[2]^2], [-3y[2]], [10]] ------------------------------- NC.Mul(F2,F1); [[4y[1], y[2], x[1], x[2]], [7y[2], x[1], x[2]], [4x[1], x[2]], [-5y[1], y[2]^2], [10y[1], y[2]], [-y[2]^2], [-3y[2]], [10]] ------------------------------- NC.Mul([],F1); [ ] -------------------------------
See also