Difference between revisions of "ApCoCoA-1:BBSGen.JacobiLin"

From ApCoCoAWiki
Line 1: Line 1:
 
<command>
 
<command>
   <title>BBSGen.TraceSyzStep</title>
+
   <title>BBSGen.JacobiLin</title>
 
   <short_description>This function computes  the K[c]-linear polynomial  entries of the Jacobi identity  [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] where m,k,l is from {1...n}.
 
   <short_description>This function computes  the K[c]-linear polynomial  entries of the Jacobi identity  [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] where m,k,l is from {1...n}.
 
</short_description>
 
</short_description>
Line 53: Line 53:
 
<see>BBSGen.JacobiStep</see>
 
<see>BBSGen.JacobiStep</see>
  
  <key>Wmat</key>
+
   <key>BBSGen.JacobiLin</key>
   <key>BBSGen.Wmat</key>
+
 
   <key>bbsmingensys.Wmat</key>
+
    
 
   <wiki-category>Package_bbsmingensys</wiki-category>
 
   <wiki-category>Package_bbsmingensys</wiki-category>
 
</command>
 
</command>

Revision as of 18:26, 18 June 2012

BBSGen.JacobiLin

This function computes the K[c]-linear polynomial entries of the Jacobi identity [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] where m,k,l is from {1...n}.

Syntax

BBSGen.JacobiLin(OO,BO,N);
BBSGen.JacobiLin(OO:LIST,BO:LIST,N:INTEGER):MATRIX

Description

Let R:=K[x_1,...,x_N] and A_k be the generic multiplication matrix associated to x_k. Let Tau^kl_ij be the polynomial in the (i,j) position of the [A_k,A_l] where k,l in {1,..,N}.

Let m,k,l in {1,...,N}. This function computes the polynomial entries of the Jacobi identity J^{mkl}= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] that has constant coeffiecients. During the computation entries of the commutators Tau^kl_ij will be considered as indeterminates t[k,l,i,j] in K[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]. Therefore the result of BBSGen.JacobiLin is a list of polynomials from the ring K[t[1..N,1..N,1..Mu,1..Mu]].

Please note that this function does not work for the case, where N=2.


  • @param Order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N].

  • @return The K[c]-linear entries of the Jacobi Identity J^{ikl}. .


Example

Use R::=QQ[x[1..3]];

OO:=[1,x[1]];
BO:=$apcocoa/borderbasis.Border(OO);
Mu:=Len(OO);
Nu:=Len(BO);
N:=Len(Indets());
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 

BBSGen.JacobiLin(OO,BO,N);


[[   [    -t[2,3,1,2],0],
    [ t[2,3,1,1] - t[2,3,2,2], t[2,3,1,2]]]]



BBSGen.JacobiFull

BBSGen.JacobiStep