Difference between revisions of "ApCoCoA-1:BBSGen.TraceSyzFull"
Line 26: | Line 26: | ||
<itemize> | <itemize> | ||
− | <item>@param The order ideal OO, border BO, the number of | + | <item>@param The order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N].(see <commandref>BB.Box</commandref>, <commandref>BB.Border</commandref> in package borderbasis) |
</item> | </item> | ||
<item>@return The list of Trace Syzygy polynomials. </item> | <item>@return The list of Trace Syzygy polynomials. </item> |
Revision as of 22:20, 14 June 2012
BBSGen.TraceSyzFull
- This function computes the trace polynomials.
Syntax
TraceSyzFull(OO,BO,N); TraceSyzFull(OO:LIST,BO:LIST,N:INTEGER):LIST
Description
Let l,k_{1},....,k_{s}\in {1,...,n} with s\in N^{+} and
Pi=x_{k_{1}}...x_{k_{s}}x_{l}
a term (or power product) from the given Ring K[x_1,...,x_N]. Let the generic multiplication matrices A_{k_{1}},...,A_{k_{s}},A_{l}\in Mat(K[c]) be associated to the indeterminates in \Pi. We shall name the polynomial
Trace([A_{k_{1}}...A_{k_{s}},A_{l}])\in K[c]
as the trace polynomial with respect to Pi and variable x_{l}. We shall denote it by
T_{Pi,x_{l}}}.
This function computes every trace polynomial with respect to every Pi that is equal to a non-standard degree of an element from \tau and every variable from {x_1,...,x_N}.
NOTE: This function due to the growth of polynomials during the matrix multiplication, may not give result for every ring and order ideal. In that case we recommend
and
.
@param The order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N].(see <commandref>BB.Box</commandref>, <commandref>BB.Border</commandref> in package borderbasis)
@return The list of Trace Syzygy polynomials.
Example
Use R::=QQ[x[1..2]]; OO:=BB.Box([1,1]); BO:=BB.Border(OO); N:=Len(Indets()); W:=BBSGen.Wmat(OO,BO,N); Mu:=Len(OO); Nu:=Len(BO); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; BBSGen.TraceSyzFull(OO,BO,N); [c[1,2]t[1,2,3,1] + c[2,2]t[1,2,3,2] + c[3,2]t[1,2,3,3] + c[4,2]t[1,2,3,4] + c[1,4]t[1,2,4,1] + c[2,4]t[1,2,4,2] + c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] + t[1,2,1,3] + t[1,2,2,4], 2c[1,1]t[1,2,2,1] + 2c[2,1]t[1,2,2,2] + 2c[3,1]t[1,2,2,3] + 2c[4,1]t[1,2,2,4]+ 2c[1,3]t[1,2,4,1] + 2c[2,3]t[1,2,4,2] + 2c[3,3]t[1,2,4,3] + 2c[4,3]t[1,2,4,4] + 2t[1,2,1,2] + 2t[1,2,3,4], c[1,2]t[1,2,3,1] + c[2,2]t[1,2,3,2] + c[3,2]t[1,2,3,3] + c[4,2]t[1,2,3,4] + c[1,4]t[1,2,4,1] + c[2,4]t[1,2,4,2] + c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] + t[1,2,1,3] + t[1,2,2,4], 2c[1,2]c[3,1]t[1,2,2,1] + 2c[1,4]c[4,1]t[1,2,2,1] + 2c[2,2]c[3,1]t[1,2,2,2] + 2c[2,4]c[4,1]t[1,2,2,2] + 2c[3,1]c[3,2]t[1,2,2,3] + 2c[3,4]c[4,1]t[1,2,2,3] + 2c[3,1]c[4,2]t[1,2,2,4] + 2c[4,1]c[4,4]t[1,2,2,4] + 2c[1,2]c[3,3]t[1,2,4,1] + 2c[1,4]c[4,3]t[1,2,4,1] + 2c[2,2]c[3,3]t[1,2,4,2] + 2c[2,4]c[4,3]t[1,2,4,2] + 2c[3,2]c[3,3]t[1,2,4,3] + 2c[3,4]c[4,3]t[1,2,4,3] + 2c[3,3]c[4,2]t[1,2,4,4] + 2c[4,3]c[4,4]t[1,2,4,4] + 2c[1,1]t[1,2,2,3] + 2c[2,1]t[1,2,2,4] + 2c[1,4]t[1,2,3,1] + 2c[2,4]t[1,2,3,2] + 2c[3,4]t[1,2,3,3] + 2c[4,4]t[1,2,3,4] + 2c[1,3]t[1,2,4,3] + 2c[2,3]t[1,2,4,4] + 2t[1,2,1,4]]