Difference between revisions of "ApCoCoA-1:BBSGen.TraceSyzLin"
From ApCoCoAWiki
Line 1: | Line 1: | ||
<command> | <command> | ||
<title>BBSGen.TraceSyzLin</title> | <title>BBSGen.TraceSyzLin</title> | ||
− | <short_description>: This function computes the K[c]-linear summand of trace polynomials.(see <ref>BBSGen.TraceSyzFull</ref>) | + | <short_description>: This function computes the K[c]-linear summand of trace polynomials.(see <ref>BBSGen.TraceSyzFull</ref>)</short_description> |
− | |||
<syntax> | <syntax> | ||
− | TraceSyzLin(OO,BO,N); | + | BBSGen.TraceSyzLin(OO,BO,N); |
− | TraceSyzLin(OO:LIST,BO:LIST,N:INTEGER):LIST | + | BBSGen.TraceSyzLin(OO:LIST,BO:LIST,N:INTEGER):LIST |
</syntax> | </syntax> | ||
<description> | <description> | ||
Line 16: | Line 15: | ||
<itemize> | <itemize> | ||
− | <item>@param The order ideal OO, border BO, the number of Indeterminates of the polynomial.(see <commandref>BB.Border</commandref> | + | <item>@param The order ideal OO, border BO, the number of Indeterminates of the polynomial.(see <commandref>BB.Border</commandref> and <commandref>BB.Box</commandref> from package borderbasis) |
− | |||
</item> | </item> | ||
<item>@return List of polynomials from K[t[1..N,1..N,1..Mu,1..Mu]] \subset XX. | <item>@return List of polynomials from K[t[1..N,1..N,1..Mu,1..Mu]] \subset XX. |
Revision as of 19:22, 8 June 2012
BBSGen.TraceSyzLin
- This function computes the K[c]-linear summand of trace polynomials.(see BBSGen.TraceSyzFull)
Syntax
BBSGen.TraceSyzLin(OO,BO,N); BBSGen.TraceSyzLin(OO:LIST,BO:LIST,N:INTEGER):LIST
Description
@param The order ideal OO, border BO, the number of Indeterminates of the polynomial.(see <commandref>BB.Border</commandref> and <commandref>BB.Box</commandref> from package borderbasis)
@return List of polynomials from K[t[1..N,1..N,1..Mu,1..Mu]] \subset XX.
Example
Use R::=QQ[x[1..2]]; OO:=BB.Box([1,1]); BO:=BB.Border(OO); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); W:=BBSGen.Wmat(OO,BO,N); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; BBSGen.TraceSyzLin(OO,BO,N); [ t[1,2,1,3] + t[1,2,2,4], 2t[1,2,1,2] + 2t[1,2,3,4], t[1,2,1,3] + t[1,2,2,4], 2t[1,2,1,4]] -------------------------------