Difference between revisions of "ApCoCoA-1:CharP.LAAlgorithm"
(New page: <command> <title>CharP.LAAlgorithm</title> <short_description>Computes the unique <tt>F_2-</tt>rational zero of a given polynomial system over <tt>F_2</tt>.</short_description> <sy...) |
m (Bot: Category moved) |
||
Line 74: | Line 74: | ||
<key>nlasolve</key> | <key>nlasolve</key> | ||
<key>finite field</key> | <key>finite field</key> | ||
− | <wiki-category>Package_charP</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_charP</wiki-category> |
</command> | </command> |
Revision as of 16:02, 2 October 2020
CharP.LAAlgorithm
Computes the unique F_2-rational zero of a given polynomial system over F_2.
Syntax
CharP.LAAlgorithm(F:LIST):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This function computes the unique zero in F_2^n of a polynomial system over F_2 . It uses LA-Algorithm to find the unique zero. The LA-Algorithm generates a sequence of linear systems to solve the given system. The LA-Algorithm can find the unique zero only. If the given polynomial system has more than one zero's in F_2^n then this function does not find any zero. In this case the trivial solution is given. To solve linear systems naive Gaußian elimination is used.
@param F: List of polynomials of given system.
@return The unique solution of the given system in F_2^n.
Example
Use Z/(2)[x[1..4]]; F:=[ x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1, x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1 ]; -- Then we compute the solution with CharP.LAAlgorithm(F); [0, 1, 0, 1]
Example
Use Z/(2)[x[1..4]]; F:=[ x[2]x[3] + x[1]x[4] + x[2]x[4] + x[3]x[4] + x[1] + x[2] + x[3] + x[4], x[2]x[3] + x[2]x[4] + x[3]x[4] + x[2] + x[3] + x[4], x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2], x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2] ]; -- Solution is not unique i.e. [0, 1, 1, 1], [0, 0, 0, 0], and [1, 1, 1, 1] are solutions -- Then we compute the solution with CharP.LAAlgorithm(F); [0, 0, 0, 0]
See also
Introduction to Groebner Basis in CoCoA