Difference between revisions of "ApCoCoA-1:BBSGen.LinIndepGen"

From ApCoCoAWiki
(New page: <command> <title>BBSGen.LinIndepGen</title> <short_description>This function computes the equivalent indeterminates modulo m^2 of BBS where m is the maximal ideal generated by the inde...)
 
Line 18: Line 18:
 
Use R::=QQ[x,y];
 
Use R::=QQ[x,y];
 
OO:=[1,x,y,xy];
 
OO:=[1,x,y,xy];
 +
BO:=BB.Border(OO);
 +
Mu:=Len(OO);
 +
Nu:=Len(BO);
  
 
BBSGen.LinIndepGen(OO);  
 
BBSGen.LinIndepGen(OO);  

Revision as of 19:36, 31 May 2012

BBSGen.LinIndepGen

This function computes the equivalent indeterminates modulo m^2 of BBS where m is the maximal ideal generated by the indeterminates {c_11,...,c_\mu \nu} .

Syntax

BBSGen.LinIndepGen(OO):
BBSGen.LinIndepGen(OO:LIST):LIST

Description

This function computes the equivalent indeterminates in the cotangent space m\m^2 of BBS and gives these equivalent indeterminates in one list(if they are not equivalent to 0) and additionally the K-linearly independent ones. The base ring can be K[x_1,..,x_n].

  • @param The order ideal OO.

  • @return The list of classes of indeterminates modulo m^2.


Example

Use R::=QQ[x,y];
OO:=[1,x,y,xy];
BO:=BB.Border(OO);
Mu:=Len(OO);
Nu:=Len(BO);

BBSGen.LinIndepGen(OO); 


[[[3, 3], [1, 1]], [[1, 2], [2, 4]], [[4, 3], [2, 1]], [[2, 2]], [[3, 1]], [[4, 4], [3, 2]], [4, 2], [4, 1]]

Class:=BBSGen.LinIndepGen(OO); 

Use BBS::=CoeffRing[c[1..Mu,1..Nu]]; 

BBSGen.IndFinder(Class,Mu,Nu);

[[c[3,3], c[1,1]], [c[1,2], c[2,4]], [c[4,3], c[2,1]], c[2,2], c[3,1], [c[4,4], c[3,2]], c[4,1], c[4,2]]
-------------------------------
-------------------------------



BBSGen.InFinder

BBSGen.PurPow