Difference between revisions of "ApCoCoA-1:BBSGen.LinIndepGen"
From ApCoCoAWiki
(New page: <command> <title>BBSGen.LinIndepGen</title> <short_description>This function computes the equivalent indeterminates modulo m^2 of BBS where m is the maximal ideal generated by the inde...) |
|||
Line 18: | Line 18: | ||
Use R::=QQ[x,y]; | Use R::=QQ[x,y]; | ||
OO:=[1,x,y,xy]; | OO:=[1,x,y,xy]; | ||
+ | BO:=BB.Border(OO); | ||
+ | Mu:=Len(OO); | ||
+ | Nu:=Len(BO); | ||
BBSGen.LinIndepGen(OO); | BBSGen.LinIndepGen(OO); |
Revision as of 19:36, 31 May 2012
BBSGen.LinIndepGen
This function computes the equivalent indeterminates modulo m^2 of BBS where m is the maximal ideal generated by the indeterminates {c_11,...,c_\mu \nu} .
Syntax
BBSGen.LinIndepGen(OO): BBSGen.LinIndepGen(OO:LIST):LIST
Description
This function computes the equivalent indeterminates in the cotangent space m\m^2 of BBS and gives these equivalent indeterminates in one list(if they are not equivalent to 0) and additionally the K-linearly independent ones. The base ring can be K[x_1,..,x_n].
@param The order ideal OO.
@return The list of classes of indeterminates modulo m^2.
Example
Use R::=QQ[x,y]; OO:=[1,x,y,xy]; BO:=BB.Border(OO); Mu:=Len(OO); Nu:=Len(BO); BBSGen.LinIndepGen(OO); [[[3, 3], [1, 1]], [[1, 2], [2, 4]], [[4, 3], [2, 1]], [[2, 2]], [[3, 1]], [[4, 4], [3, 2]], [4, 2], [4, 1]] Class:=BBSGen.LinIndepGen(OO); Use BBS::=CoeffRing[c[1..Mu,1..Nu]]; BBSGen.IndFinder(Class,Mu,Nu); [[c[3,3], c[1,1]], [c[1,2], c[2,4]], [c[4,3], c[2,1]], c[2,2], c[3,1], [c[4,4], c[3,2]], c[4,1], c[4,2]] ------------------------------- -------------------------------