Difference between revisions of "ApCoCoA-1:BBSGen.JacobiLin"

From ApCoCoAWiki
Line 1: Line 1:
 
<command>
 
<command>
 
   <title>BBSGen.TraceSyzStep</title>
 
   <title>BBSGen.TraceSyzStep</title>
   <short_description>:  This function computes  the polynomial  entries of the Jacobi identity  [ A_i[A_k,A_l ] ]+[ A_k[ A_l,A_i]] +[ A_l[A_i,A_k ] ]=0 , where i,k,l is from {1...n} , which has constant coeficients.
+
   <short_description>:  This function computes  the K[c]-linear polynomial  entries of the Jacobi identity  [ A_i[A_k,A_l ] ]+[ A_k[ A_l,A_i]] +[ A_l[A_i,A_k ] ] where i,k,l is from {1...n}.
 
</short_description>
 
</short_description>
 
    
 
    
 
<syntax>
 
<syntax>
  
JacobiLin(OO,BO,N);
+
BBSGen.JacobiLin(OO,BO,N);
JacobiLin(OO:LIST,BO:LIST,N:INTEGER):MATRIX
+
BBSGen.JacobiLin(OO:LIST,BO:LIST,N:INTEGER):MATRIX
 
</syntax>
 
</syntax>
 
   <description>
 
   <description>
Let R=K[x_1,...,x_n] and A_i is the generic multiplication matrix for x_i. Let  Tau^kl_ij :=t[k,l,i,j] be the (i,j) ^th entry of matrix the operation [A_k,A_l].   This function computes the entries of the Jacobi identity   [ A_i[A_k,A_l ] ]+[ A_k[ A_l,A_i]] +[ A_l[A_i,A_k ] ]=0 , where i,k,l is from {1...n} , which has constant coeficients.  
+
Let R=K[x_1,...,x_n] and A_k be the generic multiplication matrix associated to x_k. Let  Tau^kl_ij be the polynomial in the (i,j) position of the  [A_k,A_l] where k,l \in {1,..,n}.
 +
 
 +
LEt m,k,l \in {1,...,n}. This function computes the polynomial entries of the Jacobi identity J^{mkl}= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] that has constant coeffiecients. During the computation  entries of the commutators Tau^kl_ij will be  considered as indeterminates  t[k,l,i,j]\in XX. Therefore the result of BBSGen.JacobiLin is a list of polynomials from the ring CoeffRing[t[1..N,1..N,1..Mu,1..Mu]].
  
 
Please note that this function does not work for the case, where n=2.  
 
Please note that this function does not work for the case, where n=2.  
Line 16: Line 18:
  
 
<itemize>
 
<itemize>
   <item>@param  Order ideal OO, border BO, the number of Indeterminates of the Polynomial.
+
   <item>@param  Order ideal OO, border BO, the number of Indeterminates of the Polynomial.(see <commandref>BB.Border</commandref> in package borderbasis)
  
 
</item>
 
</item>
Line 34: Line 36:
 
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];  
 
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];  
  
BoxJacobiLin(OO,BO,N);
+
BBSGen.BoxJacobiLin(OO,BO,N);
 +
 
 +
 
 +
[[  [    -t[2,3,1,2],0],
 +
    [ t[2,3,1,1] - t[2,3,2,2], t[2,3,1,2]]]]
  
[[[0,0],
 
  [t[2,3,1,1], t[2,3,1,2]]]]
 
  
 
</example>
 
</example>

Revision as of 09:17, 8 June 2012

BBSGen.TraceSyzStep

This function computes the K[c]-linear polynomial entries of the Jacobi identity [ A_i[A_k,A_l ] ]+[ A_k[ A_l,A_i]] +[ A_l[A_i,A_k ] ] where i,k,l is from {1...n}.

Syntax

BBSGen.JacobiLin(OO,BO,N);
BBSGen.JacobiLin(OO:LIST,BO:LIST,N:INTEGER):MATRIX

Description

Let R=K[x_1,...,x_n] and A_k be the generic multiplication matrix associated to x_k. Let Tau^kl_ij be the polynomial in the (i,j) position of the [A_k,A_l] where k,l \in {1,..,n}.

LEt m,k,l \in {1,...,n}. This function computes the polynomial entries of the Jacobi identity J^{mkl}= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] that has constant coeffiecients. During the computation entries of the commutators Tau^kl_ij will be considered as indeterminates t[k,l,i,j]\in XX. Therefore the result of BBSGen.JacobiLin is a list of polynomials from the ring CoeffRing[t[1..N,1..N,1..Mu,1..Mu]].

Please note that this function does not work for the case, where n=2.


  • @param Order ideal OO, border BO, the number of Indeterminates of the Polynomial.(see <commandref>BB.Border</commandref> in package borderbasis)


  • @return The K[c]-linear entries of the Jacobi Identity J^{ikl}. .


Example

Use R::=QQ[x[1..3]];

OO:=[1,x[1]];
BO:=BB.Border(OO);
Mu:=Len(OO);
Nu:=Len(BO);
N:=Len(Indets());
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 

BBSGen.BoxJacobiLin(OO,BO,N);


[[   [    -t[2,3,1,2],0],
    [ t[2,3,1,1] - t[2,3,2,2], t[2,3,1,2]]]]


BB.Border

BB.Box

BBSGen.JacobiFull

BBSGen.JacobiStep