Difference between revisions of "ApCoCoA-1:BBSGen.JacobiLin"
Line 1: | Line 1: | ||
<command> | <command> | ||
<title>BBSGen.TraceSyzStep</title> | <title>BBSGen.TraceSyzStep</title> | ||
− | <short_description>: This function computes the polynomial entries of the Jacobi identity [ A_i[A_k,A_l ] ]+[ A_k[ A_l,A_i]] +[ A_l[A_i,A_k ] ] | + | <short_description>: This function computes the K[c]-linear polynomial entries of the Jacobi identity [ A_i[A_k,A_l ] ]+[ A_k[ A_l,A_i]] +[ A_l[A_i,A_k ] ] where i,k,l is from {1...n}. |
</short_description> | </short_description> | ||
<syntax> | <syntax> | ||
− | JacobiLin(OO,BO,N); | + | BBSGen.JacobiLin(OO,BO,N); |
− | JacobiLin(OO:LIST,BO:LIST,N:INTEGER):MATRIX | + | BBSGen.JacobiLin(OO:LIST,BO:LIST,N:INTEGER):MATRIX |
</syntax> | </syntax> | ||
<description> | <description> | ||
− | Let R=K[x_1,...,x_n] and | + | Let R=K[x_1,...,x_n] and A_k be the generic multiplication matrix associated to x_k. Let Tau^kl_ij be the polynomial in the (i,j) position of the [A_k,A_l] where k,l \in {1,..,n}. |
+ | |||
+ | LEt m,k,l \in {1,...,n}. This function computes the polynomial entries of the Jacobi identity J^{mkl}= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] that has constant coeffiecients. During the computation entries of the commutators Tau^kl_ij will be considered as indeterminates t[k,l,i,j]\in XX. Therefore the result of BBSGen.JacobiLin is a list of polynomials from the ring CoeffRing[t[1..N,1..N,1..Mu,1..Mu]]. | ||
Please note that this function does not work for the case, where n=2. | Please note that this function does not work for the case, where n=2. | ||
Line 16: | Line 18: | ||
<itemize> | <itemize> | ||
− | <item>@param Order ideal OO, border BO, the number of Indeterminates of the Polynomial. | + | <item>@param Order ideal OO, border BO, the number of Indeterminates of the Polynomial.(see <commandref>BB.Border</commandref> in package borderbasis) |
</item> | </item> | ||
Line 34: | Line 36: | ||
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; | Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; | ||
− | BoxJacobiLin(OO,BO,N); | + | BBSGen.BoxJacobiLin(OO,BO,N); |
+ | |||
+ | |||
+ | [[ [ -t[2,3,1,2],0], | ||
+ | [ t[2,3,1,1] - t[2,3,2,2], t[2,3,1,2]]]] | ||
− | |||
− | |||
</example> | </example> |
Revision as of 09:17, 8 June 2012
BBSGen.TraceSyzStep
- This function computes the K[c]-linear polynomial entries of the Jacobi identity [ A_i[A_k,A_l ] ]+[ A_k[ A_l,A_i]] +[ A_l[A_i,A_k ] ] where i,k,l is from {1...n}.
Syntax
BBSGen.JacobiLin(OO,BO,N); BBSGen.JacobiLin(OO:LIST,BO:LIST,N:INTEGER):MATRIX
Description
Let R=K[x_1,...,x_n] and A_k be the generic multiplication matrix associated to x_k. Let Tau^kl_ij be the polynomial in the (i,j) position of the [A_k,A_l] where k,l \in {1,..,n}.
LEt m,k,l \in {1,...,n}. This function computes the polynomial entries of the Jacobi identity J^{mkl}= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] that has constant coeffiecients. During the computation entries of the commutators Tau^kl_ij will be considered as indeterminates t[k,l,i,j]\in XX. Therefore the result of BBSGen.JacobiLin is a list of polynomials from the ring CoeffRing[t[1..N,1..N,1..Mu,1..Mu]].
Please note that this function does not work for the case, where n=2.
@param Order ideal OO, border BO, the number of Indeterminates of the Polynomial.(see <commandref>BB.Border</commandref> in package borderbasis)
@return The K[c]-linear entries of the Jacobi Identity J^{ikl}. .
Example
Use R::=QQ[x[1..3]]; OO:=[1,x[1]]; BO:=BB.Border(OO); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; BBSGen.BoxJacobiLin(OO,BO,N); [[ [ -t[2,3,1,2],0], [ t[2,3,1,1] - t[2,3,2,2], t[2,3,1,2]]]]