Difference between revisions of "ApCoCoA-1:BBSGen.JacobiLin"
From ApCoCoAWiki
(New page: <command> <title>BBSGen.TraceSyzStep</title> <short_description>: This function computes the polynomial entries of the Jacobi identity [ A_i[A_k,A_l ] ]+[ A_k[ A_l,A_i]] +[ A_l[A_...) |
|||
Line 49: | Line 49: | ||
<see>BB.Box</see> | <see>BB.Box</see> | ||
<see>BBSGen.JacobiFull</see> | <see>BBSGen.JacobiFull</see> | ||
− | <see>BBSGen. | + | <see>BBSGen.JacobiStep</see> |
<key>Wmat</key> | <key>Wmat</key> |
Revision as of 18:43, 31 May 2012
BBSGen.TraceSyzStep
- This function computes the polynomial entries of the Jacobi identity [ A_i[A_k,A_l ] ]+[ A_k[ A_l,A_i]] +[ A_l[A_i,A_k ] ]=0 , where i,k,l is from {1...n} , which has constant coeficients.
Syntax
JacobiLin(OO,BO,N); JacobiLin(OO:LIST,BO:LIST,N:INTEGER):MATRIX
Description
Let R=K[x_1,...,x_n] and A_i is the generic multiplication matrix for x_i. Let Tau^kl_ij :=t[k,l,i,j] be the (i,j) ^th entry of matrix the operation [A_k,A_l]. This function computes the entries of the Jacobi identity [ A_i[A_k,A_l ] ]+[ A_k[ A_l,A_i]] +[ A_l[A_i,A_k ] ]=0 , where i,k,l is from {1...n} , which has constant coeficients.
Please note that this function does not work for the case, where n=2.
@param Order ideal OO, border BO, the number of Indeterminates of the Polynomial.
@return The K[c]-linear entries of the Jacobi Identity J^{ikl}. .
Example
Use R::=QQ[x[1..3]]; OO:=[1,x[1]]; BO:=BB.Border(OO); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; BoxJacobiLin(OO,BO,N); [[[0,0], [t[2,3,1,1], t[2,3,1,2]]]]