Difference between revisions of "ApCoCoA-1:BBSGen.TraceSyzLin"
From ApCoCoAWiki
Line 1: | Line 1: | ||
<command> | <command> | ||
<title>BBSGen.TraceSyzLin</title> | <title>BBSGen.TraceSyzLin</title> | ||
− | <short_description>: This function computes the K[c]-linear summand of trace | + | <short_description>: This function computes the K[c]-linear summand of trace polynomials.(see <ref>BBSGen.TraceSyzFull</ref>) |
</short_description> | </short_description> | ||
Line 11: | Line 11: | ||
<description> | <description> | ||
− | |||
− | |||
Line 18: | Line 16: | ||
<itemize> | <itemize> | ||
− | <item>@param The order ideal OO, border BO, the number of Indeterminates of the polynomial. | + | <item>@param The order ideal OO, border BO, the number of Indeterminates of the polynomial.(see <commandref>BB.Border</commandref> |
+ | <commandref>BB.Box</commandref> from package borderbasis) | ||
</item> | </item> | ||
− | <item>@return List of | + | <item>@return List of polynomials from K[t[1..N,1..N,1..Mu,1..Mu]] \subset XX. |
</item> | </item> | ||
Line 55: | Line 54: | ||
<type>apcocoaserver</type> | <type>apcocoaserver</type> | ||
</types> | </types> | ||
− | + | ||
− | |||
<see>BBSGen.Wmat</see> | <see>BBSGen.Wmat</see> | ||
<see>BBSGen.TraceSyzStep</see> | <see>BBSGen.TraceSyzStep</see> |
Revision as of 18:24, 8 June 2012
BBSGen.TraceSyzLin
- This function computes the K[c]-linear summand of trace polynomials.(see BBSGen.TraceSyzFull)
Syntax
TraceSyzLin(OO,BO,N); TraceSyzLin(OO:LIST,BO:LIST,N:INTEGER):LIST
Description
@param The order ideal OO, border BO, the number of Indeterminates of the polynomial.(see <commandref>BB.Border</commandref>
<commandref>BB.Box</commandref> from package borderbasis)
@return List of polynomials from K[t[1..N,1..N,1..Mu,1..Mu]] \subset XX.
Example
Use R::=QQ[x[1..2]]; OO:=BB.Box([1,1]); BO:=BB.Border(OO); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); W:=BBSGen.Wmat(OO,BO,N); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; BBSGen.TraceSyzLin(OO,BO,N); [ t[1,2,1,3] + t[1,2,2,4], 2t[1,2,1,2] + 2t[1,2,3,4], t[1,2,1,3] + t[1,2,2,4], 2t[1,2,1,4]] -------------------------------