Difference between revisions of "ApCoCoA-1:BBSGen.TraceSyzFull"

From ApCoCoAWiki
Line 1: Line 1:
 
<command>
 
<command>
 
   <title>BBSGen.TraceSyzFull</title>
 
   <title>BBSGen.TraceSyzFull</title>
   <short_description>: This function computes the trace syzygy polynomials.
+
   <short_description>: This function computes the trace polynomials.
  
 
              
 
              
Line 11: Line 11:
 
</syntax>
 
</syntax>
 
   <description>
 
   <description>
Let  Tau^kl_ij :=t[k,l,i,j] be the (i,j) ^th entry of matrix the operation [A_k,A_l].  The result of the Trace Syzygy computation is K[c]-linear combination of  Tau^kl_ij      that is equal to 0.  This function computes such Trace Syzygy polynomials.  This function, because of the growth of the polynomials during the computation,may not give result for every ring with three indeterminates. In that case we recommend the functions TraceSyzLin or TraceSyzStep.
+
Let l,k_{1},....,k_{s}\in {1,...,n} where s\in N^{+} and
 +
    \Pi=x_{k_{1}}...x_{k_{s}}x_{l}.
 +
Let the generic multiplication matrices A_{k_{1}},...,A_{k_{s}},A_{l}\in Mat(K[c]) be associated to the indeterminates in \Pi. We shall name the polynomial  
 +
    Trace([A_{k_{1}}...A_{k_{s}},A_{l}])\in K[c]  
 +
as the trace  polynomial with respect to \Pi  and variable  x_{l}. We shall denote it by T_{\Pi,x_{l}}}. 
 +
This function computes every trace polynomial with respect to every \Pi that is equal to a non-standard degree of an element from \tau and every variable from {x_1,...,x_N}.   
 +
 
 +
NOTE: This function due to the growth of polynomials during the matrix multiplication, may not give result for every ring and order ideal. In that case we recommend <see>BBSGen.TraceSyzStep</see> and
 +
<see>BBSGen.TraceSyzLin</see> .
 +
 
 +
 
  
  
 
<itemize>
 
<itemize>
   <item>@param The order ideal OO, border BO, the number of Indeterminates of the Polynomial.
+
   <item>@param The order ideal OO, border BO, the number of Indeterminates of the Polynomial.(see <commandref>BB.Box</commandref>, <commandref>BB.Border</commandref> in package borderbasis)
 
</item>
 
</item>
 
   <item>@return  The list of Trace Syzygy polynomials.  </item>
 
   <item>@return  The list of Trace Syzygy polynomials.  </item>
Line 61: Line 71:
 
     <type>apcocoaserver</type>
 
     <type>apcocoaserver</type>
 
   </types>
 
   </types>
<see>BB.Border</see>
+
 
  <see>BB.Box</see>
 
 
  <see>BBSGen.Wmat</see>
 
  <see>BBSGen.Wmat</see>
 
<see>BBSGen.TraceSyzStep</see>
 
<see>BBSGen.TraceSyzStep</see>

Revision as of 18:16, 8 June 2012

BBSGen.TraceSyzFull

This function computes the trace polynomials.


Syntax

TraceSyzFull(OO,BO,N);
TraceSyzFull(OO:LIST,BO:LIST,N:INTEGER):LIST

Description

Let l,k_{1},....,k_{s}\in {1,...,n} where s\in N^{+} and

    \Pi=x_{k_{1}}...x_{k_{s}}x_{l}. 

Let the generic multiplication matrices A_{k_{1}},...,A_{k_{s}},A_{l}\in Mat(K[c]) be associated to the indeterminates in \Pi. We shall name the polynomial

   Trace([A_{k_{1}}...A_{k_{s}},A_{l}])\in K[c] 

as the trace polynomial with respect to \Pi and variable x_{l}. We shall denote it by T_{\Pi,x_{l}}}. This function computes every trace polynomial with respect to every \Pi that is equal to a non-standard degree of an element from \tau and every variable from {x_1,...,x_N}.

NOTE: This function due to the growth of polynomials during the matrix multiplication, may not give result for every ring and order ideal. In that case we recommend

BBSGen.TraceSyzStep

and

BBSGen.TraceSyzLin

.



  • @param The order ideal OO, border BO, the number of Indeterminates of the Polynomial.(see <commandref>BB.Box</commandref>, <commandref>BB.Border</commandref> in package borderbasis)

  • @return The list of Trace Syzygy polynomials.


Example

    
Use R::=QQ[x[1..2]];
OO:=BB.Box([1,1]);
BO:=BB.Border(OO);
 W:=BBSGen.Wmat(OO,BO,N);
Mu:=Len(OO);
Nu:=Len(BO);
N:=Len(Indets());

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 


BBSGen.TraceSyzFull(OO,BO,N);

[c[1,2]t[1,2,3,1] + c[2,2]t[1,2,3,2] + c[3,2]t[1,2,3,3] + c[4,2]t[1,2,3,4] +
 c[1,4]t[1,2,4,1] + c[2,4]t[1,2,4,2] + c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] + 
t[1,2,1,3] + t[1,2,2,4],
  2c[1,1]t[1,2,2,1] + 2c[2,1]t[1,2,2,2] + 2c[3,1]t[1,2,2,3] + 2c[4,1]t[1,2,2,4]+ 
2c[1,3]t[1,2,4,1] + 2c[2,3]t[1,2,4,2] + 2c[3,3]t[1,2,4,3] + 2c[4,3]t[1,2,4,4] 
+ 2t[1,2,1,2] + 2t[1,2,3,4],
  c[1,2]t[1,2,3,1] + c[2,2]t[1,2,3,2] + c[3,2]t[1,2,3,3] + c[4,2]t[1,2,3,4] + 
c[1,4]t[1,2,4,1] + c[2,4]t[1,2,4,2] + c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] + 
t[1,2,1,3] + t[1,2,2,4],
  2c[1,2]c[3,1]t[1,2,2,1] + 2c[1,4]c[4,1]t[1,2,2,1] + 2c[2,2]c[3,1]t[1,2,2,2] +
 2c[2,4]c[4,1]t[1,2,2,2] + 2c[3,1]c[3,2]t[1,2,2,3] + 2c[3,4]c[4,1]t[1,2,2,3] +
 2c[3,1]c[4,2]t[1,2,2,4] + 2c[4,1]c[4,4]t[1,2,2,4] + 2c[1,2]c[3,3]t[1,2,4,1] +
 2c[1,4]c[4,3]t[1,2,4,1] + 2c[2,2]c[3,3]t[1,2,4,2] + 2c[2,4]c[4,3]t[1,2,4,2] +
 2c[3,2]c[3,3]t[1,2,4,3] + 2c[3,4]c[4,3]t[1,2,4,3] + 2c[3,3]c[4,2]t[1,2,4,4] + 
2c[4,3]c[4,4]t[1,2,4,4] + 2c[1,1]t[1,2,2,3] + 2c[2,1]t[1,2,2,4] + 2c[1,4]t[1,2,3,1] + 
2c[2,4]t[1,2,3,2] + 2c[3,4]t[1,2,3,3] + 2c[4,4]t[1,2,3,4] + 2c[1,3]t[1,2,4,3] +
 2c[2,3]t[1,2,4,4] + 2t[1,2,1,4]]


BBSGen.Wmat

BBSGen.TraceSyzStep

BBSGen.TraceSyzLin