Difference between revisions of "ApCoCoA-1:BBSGen.NonStand"

From ApCoCoAWiki
(Removing all content from page)
Line 1: Line 1:
<command>
 
  <title>BBSGen.NonStand</title>
 
  <short_description> Finds the non-standard indeterminates of the ring <tt>K[c_{ij}]</tt> with respect to the arrow grading. </short_description>
 
 
 
<syntax>
 
BBSGen.NonStand(OO:LIST,BO:LIST,N:INT,W:MATRIX):LIST
 
</syntax>
 
  <description>
 
  
<itemize>
 
<item>@param <em>OO</em> A list of terms representing an order ideal.</item>
 
  <item>@param <em>BO</em> A list of terms representing the border.</item>
 
<item>@param <em>N</em> The number of elements of the Polynomial ring <tt>K[x_1,...x_n]</tt>.</item>
 
<item>@param <em>W</em> The weight matrix.</item>
 
 
 
  <item>@return A list of non-standard indeterminates from <tt>BBS=K[c_{ij}]</tt> with their degree vectors from field <tt>K</tt>.</item>
 
</itemize>
 
<example>
 
 
Use R::=QQ[x[1..2]];
 
 
OO:=BB.Box([1,1]);
 
BO:=BB.Border(OO);
 
Mu:=Len(OO);
 
Nu:=Len(BO);
 
W:=Wmat(OO,BO,N);
 
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];
 
 
 
BBSGen.NonStand(OO,BO,N,W);
 
 
[[c[1,3], [R :: 1, R :: 2]],
 
[c[1,4], [R :: 2, R :: 1]],
 
[c[2,3], [R :: 1, R :: 1]],
 
[c[3,4], [R :: 1, R :: 1]]]
 
-------------------------------
 
 
</example>
 
  </description>
 
  <types>
 
    <type>bbsmingensys</type>
 
  </types>
 
  <see>BBSGen.Wmat</see>
 
<key>Wmat</key>
 
  <key>BBSGen.NonStand</key>
 
  <key>bbsmingensys.NonStand</key>
 
  <wiki-category>Package_bbsmingensys</wiki-category>
 
</command>
 

Revision as of 19:08, 13 February 2012