|
|
Line 1: |
Line 1: |
− | <command>
| |
− | <title>BBSGen.NonStand</title>
| |
− | <short_description> Finds the non-standard indeterminates of the ring <tt>K[c_{ij}]</tt> with respect to the arrow grading. </short_description>
| |
− |
| |
− | <syntax>
| |
− | BBSGen.NonStand(OO:LIST,BO:LIST,N:INT,W:MATRIX):LIST
| |
− | </syntax>
| |
− | <description>
| |
| | | |
− | <itemize>
| |
− | <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
| |
− | <item>@param <em>BO</em> A list of terms representing the border.</item>
| |
− | <item>@param <em>N</em> The number of elements of the Polynomial ring <tt>K[x_1,...x_n]</tt>.</item>
| |
− | <item>@param <em>W</em> The weight matrix.</item>
| |
− |
| |
− |
| |
− | <item>@return A list of non-standard indeterminates from <tt>BBS=K[c_{ij}]</tt> with their degree vectors from field <tt>K</tt>.</item>
| |
− | </itemize>
| |
− | <example>
| |
− |
| |
− | Use R::=QQ[x[1..2]];
| |
− |
| |
− | OO:=BB.Box([1,1]);
| |
− | BO:=BB.Border(OO);
| |
− | Mu:=Len(OO);
| |
− | Nu:=Len(BO);
| |
− | W:=Wmat(OO,BO,N);
| |
− | Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];
| |
− |
| |
− |
| |
− | BBSGen.NonStand(OO,BO,N,W);
| |
− |
| |
− | [[c[1,3], [R :: 1, R :: 2]],
| |
− | [c[1,4], [R :: 2, R :: 1]],
| |
− | [c[2,3], [R :: 1, R :: 1]],
| |
− | [c[3,4], [R :: 1, R :: 1]]]
| |
− | -------------------------------
| |
− |
| |
− | </example>
| |
− | </description>
| |
− | <types>
| |
− | <type>bbsmingensys</type>
| |
− | </types>
| |
− | <see>BBSGen.Wmat</see>
| |
− | <key>Wmat</key>
| |
− | <key>BBSGen.NonStand</key>
| |
− | <key>bbsmingensys.NonStand</key>
| |
− | <wiki-category>Package_bbsmingensys</wiki-category>
| |
− | </command>
| |