Difference between revisions of "ApCoCoA-1:NC.MB"

From ApCoCoAWiki
Line 2: Line 2:
 
<title>NC.MB</title>
 
<title>NC.MB</title>
 
<short_description>
 
<short_description>
Macaulay basis of <tt>K</tt>-algebra with respect to Ordering.
+
Enumerate Macaulay basis of a <tt>K</tt>-algebra.
 
</short_description>
 
</short_description>
 
<syntax>
 
<syntax>
Line 11: Line 11:
 
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
 
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
 
<par/>
 
<par/>
Please set ring environment coefficient field <tt>K</tt>, alphabet (or indeterminates) <tt>X</tt> and ordering through the functions <ref>NC.SetFp</ref>(Prime), <ref>NC.SetX</ref>(X) and <ref>NC.SetOrdering</ref>(Ordering), respectively, before calling the function. Default coefficient field is <tt>Q</tt>. Default ordering is length-lexicographic ordering (<quotes>LLEX</quotes>). For more information, please check the relevant functions.
+
Please set ring environment <em>coefficient field</em> <tt>K</tt>, <em>alphabet</em> (or set of indeterminates) <tt>X</tt> and <em>ordering</em> via the functions <ref>NC.SetFp</ref>, <ref>NC.SetX</ref> and <ref>NC.SetOrdering</ref>, respectively, before calling the function. Default coefficient field is <tt>Q</tt>. Default ordering is length-lexicographic ordering (<quotes>LLEX</quotes>). For more information, please check the relevant functions.
 
<itemize>
 
<itemize>
<item>@param <em>Gb:</em> a LIST of non-zero polynomials in <tt>K&lt;X&gt;</tt> which is a Groebner basis of (two-sided) ideal generated by Gb. Each polynomial is represented as a LIST of LISTs, which are pairs of form [C, W] where C is a coefficient and W is a word (or term). Each term is represented as a STRING. For example, <tt>xy^2x</tt> is represented as <quotes>xyyx</quotes>, unit is represented as an empty string <quotes></quotes>. Then, polynomial <tt>F=xy-y+1</tt> is represented as F:=[[1,<quotes>xy</quotes>], [-1, <quotes>y</quotes>], [1,<quotes></quotes>]]. <tt>0</tt> polynomial is represented as an empty LIST [].</item>
+
<item>@param <em>Gb:</em> a LIST of non-zero polynomials in <tt>K&lt;X&gt;</tt> which is a Groebner basis (w.r.t. a length compatible admissible ordering, say <tt>Ordering</tt>) of the two-sided ideal generated by Gb. Each polynomial is represented as a LIST of monomials, which are pairs of the form [C, W] where W is a word in <tt>&lt;X&gt;</tt> and C is the coefficient of W. For example, the polynomial <tt>F=xy-y+1</tt> is represented as F:=[[1,<quotes>xy</quotes>], [-1, <quotes>y</quotes>], [1,<quotes></quotes>]]. <em>Warning:</em> users should take responsibility to make sure that Gb is indeed a Groebner basis w.r.t. <tt>Ordering</tt>! In the case that Gb is a partical Groebner basis, the function outputs pseudo values.</item>
<item>@param <em>DegreeBound:</em> (optional) a positive integer which is a degree bound of Hilbert function.</item>
+
<item>@param <em>DegreeBound:</em> (optional) a positive integer which is a degree bound of Hilbert funtion. <em>Note that</em> we set <tt>DegreeBound=32</tt> by default. Thus to compute all the values of the Hilbert function, it is necessary to set  <tt>DegreeBound</tt> to a larger enough number.</item>
<item>@return: a LIST of terms which form the Macaulay basis of <tt>K&lt;X&gt;/(Gb)</tt> with respect to Ordering.</item>
+
<item>@return: a LIST of terms which forms the Macaulay basis of the K-algebra <tt>K&lt;X&gt;/(Gb)</tt> w.r.t. <tt>Ordering</tt>.</item>
 
</itemize>
 
</itemize>
 
<example>
 
<example>

Revision as of 12:09, 7 June 2012

NC.MB

Enumerate Macaulay basis of a K-algebra.

Syntax

NC.MB(Gb:LIST):LIST
NC.MB(Gb:LIST, DegreeBound:INT):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

Please set ring environment coefficient field K, alphabet (or set of indeterminates) X and ordering via the functions NC.SetFp, NC.SetX and NC.SetOrdering, respectively, before calling the function. Default coefficient field is Q. Default ordering is length-lexicographic ordering ("LLEX"). For more information, please check the relevant functions.

  • @param Gb: a LIST of non-zero polynomials in K<X> which is a Groebner basis (w.r.t. a length compatible admissible ordering, say Ordering) of the two-sided ideal generated by Gb. Each polynomial is represented as a LIST of monomials, which are pairs of the form [C, W] where W is a word in <X> and C is the coefficient of W. For example, the polynomial F=xy-y+1 is represented as F:=[[1,"xy"], [-1, "y"], [1,""]]. Warning: users should take responsibility to make sure that Gb is indeed a Groebner basis w.r.t. Ordering! In the case that Gb is a partical Groebner basis, the function outputs pseudo values.

  • @param DegreeBound: (optional) a positive integer which is a degree bound of Hilbert funtion. Note that we set DegreeBound=32 by default. Thus to compute all the values of the Hilbert function, it is necessary to set DegreeBound to a larger enough number.

  • @return: a LIST of terms which forms the Macaulay basis of the K-algebra K<X>/(Gb) w.r.t. Ordering.

Example

NC.SetX(<quotes>xyzt</quotes>);
NC.SetOrdering(<quotes>LLEX</quotes>);
Gb:= [[[1, <quotes>yt</quotes>], [-1, <quotes>ty</quotes>]], [[1, <quotes>xt</quotes>], [-1, <quotes>tx</quotes>]], [[1, <quotes>xy</quotes>], [-1, <quotes>ty</quotes>]], [[1, <quotes>xx</quotes>], [-1, <quotes>yx</quotes>]], 
[[1, <quotes>tyy</quotes>], [-1, <quotes>tty</quotes>]], [[1, <quotes>yyx</quotes>], [-1, <quotes>tyx</quotes>]]];
NC.MB(Gb,3);

[[<quotes></quotes>], [<quotes>t</quotes>, <quotes>z</quotes>, <quotes>y</quotes>, <quotes>x</quotes>], [<quotes>tt</quotes>, <quotes>tz</quotes>, <quotes>ty</quotes>, <quotes>tx</quotes>, <quotes>zt</quotes>, <quotes>zz</quotes>, <quotes>zy</quotes>, <quotes>zx</quotes>, <quotes>yz</quotes>, <quotes>yy</quotes>, <quotes>yx</quotes>, <quotes>xz</quotes>], 
[<quotes>ttt</quotes>, <quotes>ttz</quotes>, <quotes>tty</quotes>, <quotes>ttx</quotes>, <quotes>tzt</quotes>, <quotes>tzz</quotes>, <quotes>tzy</quotes>, <quotes>tzx</quotes>, <quotes>tyz</quotes>, <quotes>tyx</quotes>, <quotes>txz</quotes>, <quotes>ztt</quotes>, <quotes>ztz</quotes>, <quotes>zty</quotes>, <quotes>ztx</quotes>,
<quotes>zzt</quotes>, <quotes>zzz</quotes>, <quotes>zzy</quotes>, <quotes>zzx</quotes>, <quotes>zyz</quotes>, <quotes>zyy</quotes>, <quotes>zyx</quotes>, <quotes>zxz</quotes>, <quotes>yzt</quotes>, <quotes>yzz</quotes>, <quotes>yzy</quotes>, <quotes>yzx</quotes>, <quotes>yyz</quotes>, <quotes>yyy</quotes>,
 <quotes>yxz</quotes>, <quotes>xzt</quotes>, <quotes>xzz</quotes>, <quotes>xzy</quotes>, <quotes>xzx</quotes>]]
-------------------------------

See also

NC.Add

NC.Deg

NC.FindPolynomials

NC.GB

NC.HF

NC.Interreduction

NC.Intersection

NC.IsGB

NC.KernelOfHomomorphism

NC.LC

NC.LT

NC.LTIdeal

NC.MB

NC.MinimalPolynomial

NC.Multiply

NC.NR

NC.ReducedGB

NC.SetFp

NC.SetOrdering

NC.SetRelations

NC.SetRules

NC.SetX

NC.Subtract

NC.UnsetFp

NC.UnsetOrdering

NC.UnsetRelations

NC.UnsetRules

NC.UnsetX

Introduction to CoCoAServer