Difference between revisions of "ApCoCoA-1:GLPK.L01PSolve"
From ApCoCoAWiki
(New page: <command> <title>GLPK.MIPSolve</title> <short_description>Solving linear programmes.</short_description> <syntax> GLPK.MIPSolve(Objective_f:POLY, EQ_Poly:LIST, LE_Poly:LIST, GE_Poly:LIST, ...) |
|||
Line 1: | Line 1: | ||
<command> | <command> | ||
− | <title>GLPK. | + | <title>GLPK.L01PSolve</title> |
− | <short_description> | + | <short_description>Solve a system of polynomial equations over <tt>F_2</tt> for one solution in <tt>F_2^n</tt>.</short_description> |
<syntax> | <syntax> | ||
− | GLPK. | + | GLPK.L01PSolve(F:LIST, CuttingNumber:INT, QStrategy:INT, CStrategy:INT, MinMax:STRING) |
</syntax> | </syntax> | ||
<description> | <description> | ||
Line 9: | Line 9: | ||
<itemize> | <itemize> | ||
− | <item>@param <em> | + | <item>@param <em>F</em>: A List containing the polynomials of the given system.</item> |
− | + | <item>@param <em>CuttingNumber</em>: Maximal support-length of the linear polynomials for conversion to CNF. The possible value could be from 3 to 6. </item> | |
− | <item>@param <em> | + | <item>@param <em>QStrategy</em>: Strategy for quadratic substitution. 0 - Standard; 1 - Linear Partner; and 2 - Double Linear Partner;</item> |
− | + | <item>@param <em>CStrategy</em>: Strategy for cubic substitution. 0 - Standard; and 1 - Quadratic Partner;</item> | |
− | <item>@param <em> | + | <item>@param <em>MinMax</em>: Optimization direction i.e. minimization (<quotes>Min</quotes>) or maximization (<quotes>Max</quotes>).</item> |
− | |||
− | <item>@param <em> | ||
− | <item>@param <em>MinMax</em>: | ||
− | |||
</itemize> | </itemize> | ||
Revision as of 14:28, 7 December 2010
GLPK.L01PSolve
Solve a system of polynomial equations over F_2 for one solution in F_2^n.
Syntax
GLPK.L01PSolve(F:LIST, CuttingNumber:INT, QStrategy:INT, CStrategy:INT, MinMax:STRING)
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
@param F: A List containing the polynomials of the given system.
@param CuttingNumber: Maximal support-length of the linear polynomials for conversion to CNF. The possible value could be from 3 to 6.
@param QStrategy: Strategy for quadratic substitution. 0 - Standard; 1 - Linear Partner; and 2 - Double Linear Partner;
@param CStrategy: Strategy for cubic substitution. 0 - Standard; and 1 - Quadratic Partner;
@param MinMax: Optimization direction i.e. minimization ("Min") or maximization ("Max").
Example
-- We want to maximize the Function y = - 1/2x, -- with the two conditions y ≤ 6 - 3/4x and y ≥ 1 - x and the bounds 0 ≤ x ≤ 6 and 1/3 ≤ y ≤ 4. -- We prename the input of GLPK.MIPSolve-function. Use S::=QQ[x,y]; OF := 1/2x + y; LE := [3/4x + y - 6]; GE := [x + y - 1]; Bounds:=[[0,6], [1/3,4]]; IntNum:=[x,y]; -- Then we compute the solution with GLPK.MIPSolve(OF, [], LE, GE, Bounds, IntNum, [], <quotes>Max</quotes>); -- And we achieve: Solution Status: INTEGER OPTIMAL Value of objective function: 5 [x - 2, y - 4]