Difference between revisions of "ApCoCoA-1:Hom.LRSolve"

From ApCoCoAWiki
Line 16: Line 16:
  
 
<example>
 
<example>
-- We want to solve the given system for Gamma=0.2+1.2*I and using default configurations.
+
-- An example of zero dimensional Non-Homogeneous Solving using the classical linear homotopy.
-- The start solution for the homotopy is [ [0.0, 0.0 ], [1.0, 0.0], [0.0, 0.0], [1.0, 0.0] ].
+
-- We want to find isolated solutions of the following system.  
-- The start system for the homotopy is [ x[1],x[2]-1,x[3],x[4]-1,x[1]^2 - x[1], x[2]^2 - x[2], x[3]^2 - x[3], x[4]^2 - x[4] ].  
 
  
Use S ::= QQ[x[1..4]];               
+
Use QQ[x[1..3]];               
 
P := [
 
P := [
186x[1]x[2]x[3]x[4] - 42x[1]x[2]x[3] - 24x[1]x[2]x[4] - 18x[1]x[3]x[4] - 48x[2]x[3]x[4] + 9x[1]x[2] - 6x[1]x[3] + 9x[2]x[3] +
+
  x[1]x[2]x[3] - x[1]x[2]-15,  
15x[2]x[4] + 9x[3]x[4] + 15x[1] + 15x[3] - 15,  
+
  3x[1]x[2]-x[1]+5,  
186x[1]x[2]x[3]x[4] - 42x[1]x[2]x[3] - 24x[1]x[2]x[4] - 48x[1]x[3]x[4] - 18x[2]x[3]x[4] + 9x[1]x[2] + 9x[1]x[3] - 6x[2]x[3] +
+
  7x[1]x[3] - x[1],
15x[1]x[4] + 9x[3]x[4] + 15x[2] + 15x[3] - 15,  
+
  24x[1]x[2]+x[3] - 3x[1]x[3] - 1,  
186x[1]x[2]x[3]x[4] - 48x[1]x[2]x[3] - 18x[1]x[2]x[4] - 42x[1]x[3]x[4] - 24x[2]x[3]x[4] + 9x[1]x[2] + 9x[1]x[3] + 15x[2]x[3] -  
+
  x[1]^2 - x[1]  
6x[1]x[4] + 9x[3]x[4] + 15x[1] + 15x[4] - 15,  
 
24x[1]x[2]x[3]x[4] - 3x[1]x[3] - 3x[2]x[3] - 3x[1]x[4] - 3x[2]x[4] + 3,  
 
x[1]^2 - x[1],
 
x[2]^2 - x[2],
 
x[3]^2 - x[3],
 
x[4]^2 - x[4]
 
 
];
 
];
SSys := [ x[1],x[2]-1,x[3],x[4]-1,x[1]^2 - x[1], x[2]^2 - x[2], x[3]^2 - x[3], x[4]^2 - x[4] ];
 
Gamma := <quotes>0.2+1.2*I</quotes>;
 
SSol := [ [ [<quotes>0.0</quotes>, <quotes>0.0</quotes>], [<quotes>1.0</quotes>, <quotes>0.0</quotes>], [<quotes>0.0</quotes>, <quotes>0.0</quotes>], [<quotes>1.0</quotes>, <quotes>0.0</quotes>] ] ];
 
ConfigSet := [<quotes>USERHOMOTOPY: 1</quotes>];
 
  
 +
-- Then we compute the solution with
 +
Hom.LRSolve(P);
 +
 +
-- Now you have to interact with ApCoCoAServer
 +
-- Enter 1 for the polyhedral homotopy and 2 for the classical linear homotopy.
 +
-- Since we want to use the classical linear homotopy therefore we enter 2.
 +
-- The all finite solutions are:
 +
 +
----------------------------------------
 +
[
 +
[[9455327382203569/5000000000000000, -25208009777282481/10000000000000000],
 +
  [13172347071045859/1000000000000000000, 780259255441451/10000000000000000],
 +
  [50662103933981573/100000000000000000, 24894084616179979/50000000000000000]],
 +
[[94045825811783779/10000000000000000000, -18561325122258089/500000000000000000],
 +
  [-11252856171103929/500000000000000, 53756347909614881/10000000000000000],
 +
  [43866568184785617/10000000000000000, -970984718484509/40000000000000]],
 +
[[23564339009933287/1000000000000000000, 37422202697036111/1000000000000000000],
 +
  [-20929334925895049/1000000000000000, -24991129623196171/2500000000000000],
 +
  [26847721395327557/10000000000000000, 20456859352398073/1000000000000000]],
 +
[[-5340666810400797/10000000000000000, 7138058708108771/2500000000000000],
 +
  [157412137424673/4000000000000000, -15131835631465503/250000000000000000],
 +
  [45533206002984217/1000000000000000000, -67237130550938307/100000000000000000]],
 +
[[2223557602823067/10000000000000, -19326230622413977/250000000000000],
 +
  [-15392736087963673/2000000000000000, 18511778667155307/200000000000000000],
 +
  [-25906948948013323/1000000000000000, 3338667600178357/50000000000000]]
 +
]
 +
 +
</example>
 +
 +
 +
<example>
 +
-- An example of zero dimensional Non-Homogeneous Solving using the polyhedral homotopy.
 +
-- We want to find isolated solutions of non-homogeneous polynomial system x[1]^2-1=0, x[1]x[2]-1=0, x[1]^2-x[1]=0.
 +
 +
Use QQ[x[1..2]];         
 +
P := [x[1]^2-1, x[1]x[2]-1,x[1]^2-x[1]];
  
 
-- Then we compute the solution with
 
-- Then we compute the solution with
Bertini.BUHSolve(P, SSys, Gamma, SSol, ConfigSet);
+
Hom.LRSolve(P);
 +
 
 +
-- Now you have to interact with ApCoCoAServer
 +
-- Enter 1 for the polyhedral homotopy and 2 for the classical linear homotopy.
 +
-- Since we want to use polyhedral homotopy therefore we enter 1.
 +
-- The all finite solutions are:
  
-- And we achieve a list of lists containing real solutions.
 
 
----------------------------------------
 
----------------------------------------
 +
[
 +
[[-9143436298249491/20000000000000000, 9937657539108147/50000000000000000],
 +
[-24282046571107613/50000000000000000, 18641461485865229/100000000000000000]],
 +
[[1, 0], [1, 0]]
 +
]
 +
  
[[0, 1, 0, 1]]
 
  
--For Bertini output files please refer to ApCoCoA directory/Bertini.
+
-- The smallest list represents a complex number. For example above system has 2 solutions the second solution is [[1, 0], [1, 0]]
 +
-- and we read it as x=2+0i, y=1+0i. Since imaginary part is zero therefore its a real solution.  
 +
 
 
</example>
 
</example>
 
  
  

Revision as of 11:26, 22 July 2010

Hom.HSolve

Solves a zero dimensional square homogeneous or non-homogeneous polynomial system of equations.

Syntax

Hom.HSolve(P:LIST)

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

The use of this function is two folds depending on the input that you provide in ApCoCoAServer during execution. After passing the command HSolve(P) in CoCoA you need to interact with ApCoCoAServer. At this stage ApCoCoAServer asks you to enter 1 for the polyhedral homotopy and enter 2 for the classical linear homotopy. As a result this function provides all isolated solutions of a zero dimensional system of polynomial equations. The system of polynomials may be homogeneous or nonhomogeneous.

  • @param P: List of polynomials of the given system.

  • @return A list of lists containing the finite solutions of the system P.


Example

-- An example of zero dimensional Non-Homogeneous Solving using the classical linear homotopy.
-- We want to find isolated solutions of the following system. 

Use QQ[x[1..3]];              
P := [
  x[1]x[2]x[3] - x[1]x[2]-15, 
  3x[1]x[2]-x[1]+5, 
  7x[1]x[3] - x[1],
  24x[1]x[2]+x[3] - 3x[1]x[3] - 1, 
  x[1]^2 - x[1] 
];

-- Then we compute the solution with
Hom.LRSolve(P);

-- Now you have to interact with ApCoCoAServer
-- Enter 1 for the polyhedral homotopy and 2 for the classical linear homotopy.
-- Since we want to use the classical linear homotopy therefore we enter 2.
-- The all finite solutions are:

----------------------------------------
[
 [[9455327382203569/5000000000000000, -25208009777282481/10000000000000000],
  [13172347071045859/1000000000000000000, 780259255441451/10000000000000000],
  [50662103933981573/100000000000000000, 24894084616179979/50000000000000000]],
 [[94045825811783779/10000000000000000000, -18561325122258089/500000000000000000],
  [-11252856171103929/500000000000000, 53756347909614881/10000000000000000],
  [43866568184785617/10000000000000000, -970984718484509/40000000000000]],
 [[23564339009933287/1000000000000000000, 37422202697036111/1000000000000000000],
  [-20929334925895049/1000000000000000, -24991129623196171/2500000000000000],
  [26847721395327557/10000000000000000, 20456859352398073/1000000000000000]],
 [[-5340666810400797/10000000000000000, 7138058708108771/2500000000000000],
  [157412137424673/4000000000000000, -15131835631465503/250000000000000000],
  [45533206002984217/1000000000000000000, -67237130550938307/100000000000000000]],
 [[2223557602823067/10000000000000, -19326230622413977/250000000000000],
  [-15392736087963673/2000000000000000, 18511778667155307/200000000000000000],
  [-25906948948013323/1000000000000000, 3338667600178357/50000000000000]]
]


Example

-- An example of zero dimensional Non-Homogeneous Solving using the polyhedral homotopy.
-- We want to find isolated solutions of non-homogeneous polynomial system x[1]^2-1=0, x[1]x[2]-1=0, x[1]^2-x[1]=0. 

Use QQ[x[1..2]];           
P := [x[1]^2-1, x[1]x[2]-1,x[1]^2-x[1]];

-- Then we compute the solution with
Hom.LRSolve(P);

-- Now you have to interact with ApCoCoAServer
-- Enter 1 for the polyhedral homotopy and 2 for the classical linear homotopy.
-- Since we want to use polyhedral homotopy therefore we enter 1.
-- The all finite solutions are:

----------------------------------------
[
[[-9143436298249491/20000000000000000, 9937657539108147/50000000000000000],
 [-24282046571107613/50000000000000000, 18641461485865229/100000000000000000]],
 [[1, 0], [1, 0]]
]



-- The smallest list represents a complex number. For example above system has 2 solutions the second solution is [[1, 0], [1, 0]] 
-- and we read it as x=2+0i, y=1+0i. Since imaginary part is zero therefore its a real solution. 



See also

Introduction to CoCoAServer

Hom.LRSolve

Hom.SRSolve