Difference between revisions of "ApCoCoA-1:SAT.ConvertToCNF"

From ApCoCoAWiki
Line 3: Line 3:
 
     <short_description>Converts a given quadratic (cubic) system of polynomial equations (SPE) over GF(2) to CNF. Writes the CNF to the file <tt>sat.cnf</tt></short_description>
 
     <short_description>Converts a given quadratic (cubic) system of polynomial equations (SPE) over GF(2) to CNF. Writes the CNF to the file <tt>sat.cnf</tt></short_description>
 
<syntax>
 
<syntax>
SAT.ConvertToCNF(SPE:LIST, CuttingNumber:INT, QStrategy:INT)
+
SAT.ConvertToCNF(SPE:LIST, CuttingNumber:INT, QStrategy:INT, CStrategy:INT)
 
</syntax>
 
</syntax>
 
     <description>
 
     <description>
Line 11: Line 11:
 
<item>@param <em>SPE</em>: A List containing the polynomial equations of the system.</item>  
 
<item>@param <em>SPE</em>: A List containing the polynomial equations of the system.</item>  
 
<item>@param <em>CuttingNumber</em>: Maximal support-length of the linear polynomials when their corresponding CNF is written to the file. Could be 3 - 6. </item>
 
<item>@param <em>CuttingNumber</em>: Maximal support-length of the linear polynomials when their corresponding CNF is written to the file. Could be 3 - 6. </item>
<item>@param <em>QStrategy</em>: Strategy for quadratic substitution. 0 - Standard; 1 - Linear Partner; 2 - Adv. Lin. Partner;</item>
+
<item>@param <em>QStrategy</em>: Strategy for quadratic substitution. 0 - Standard; 1 - Linear Partner; 2 - Adv. Lin. Partner;
 +
<item>@param <em>CStrategy</em>: Strategy for cubic substitution. 0 - Standard; 1 - Quadratic Partner;</item>
 
</itemize>
 
</itemize>
  
Line 21: Line 22:
 
F3:= x[1]x[2] + x[3];
 
F3:= x[1]x[2] + x[3];
 
SPE:=[F1,F2,F3];  
 
SPE:=[F1,F2,F3];  
SAT.ConvertToCNF(SPE,4,0);
+
SAT.ConvertToCNF(SPE,4,0,0);
 
SAT.LaunchMiniSat(<quotes>sat.cnf</quotes>);
 
SAT.LaunchMiniSat(<quotes>sat.cnf</quotes>);
 
SAT.GetResult();
 
SAT.GetResult();
Line 34: Line 35:
 
F3:=x[1]x[2] + x[2]x[3] + x[2];
 
F3:=x[1]x[2] + x[2]x[3] + x[2];
 
SPE:=[F1,F2,F3];
 
SPE:=[F1,F2,F3];
SAT.ConvertToCNF(SPE,4,0);
+
SAT.ConvertToCNF(SPE,4,0,0);
 
SAT.LaunchMiniSat(<quotes>sat.cnf</quotes>);
 
SAT.LaunchMiniSat(<quotes>sat.cnf</quotes>);
 
SAT.GetResult();
 
SAT.GetResult();

Revision as of 08:19, 26 May 2010

SAT.ConvertToCNF

Converts a given quadratic (cubic) system of polynomial equations (SPE) over GF(2) to CNF. Writes the CNF to the file sat.cnf

Syntax

SAT.ConvertToCNF(SPE:LIST, CuttingNumber:INT, QStrategy:INT, CStrategy:INT)

Description

This function starts the conversion algorithm.

  • @param SPE: A List containing the polynomial equations of the system.

  • @param CuttingNumber: Maximal support-length of the linear polynomials when their corresponding CNF is written to the file. Could be 3 - 6.

  • @param QStrategy: Strategy for quadratic substitution. 0 - Standard; 1 - Linear Partner; 2 - Adv. Lin. Partner; <item>@param CStrategy: Strategy for cubic substitution. 0 - Standard; 1 - Quadratic Partner;

Example

-- quadratic system:
Use R::=ZZ/(2)[x[1..3]];
F1:= x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3];
F2:= x[2] + 1;
F3:= x[1]x[2] + x[3];
SPE:=[F1,F2,F3]; 
SAT.ConvertToCNF(SPE,4,0,0);
SAT.LaunchMiniSat(<quotes>sat.cnf</quotes>);
SAT.GetResult();
--Result: [0,1,0] Test with: Eval(SPE,[0,1,0]);

Example

-- cubic system:
Use ZZ/(2)[x[1..3]];
F1:=x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[3] +1;
F2:=x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[2];
F3:=x[1]x[2] + x[2]x[3] + x[2];
SPE:=[F1,F2,F3];
SAT.ConvertToCNF(SPE,4,0,0);
SAT.LaunchMiniSat(<quotes>sat.cnf</quotes>);
SAT.GetResult();
--Result: [0,0,1] Test with: Eval(SPE,[0,0,1]);