Difference between revisions of "ApCoCoA-1:CharP.GBasisModSquares"

From ApCoCoAWiki
m (insert version info)
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
   <command>
+
   {{Version|1}}
     <title>Char2.GBasisModSquares</title>
+
<command>
 +
     <title>CharP.GBasisModSquares</title>
 
     <short_description>Computing a Groebner Basis of a given ideal intersected with <tt>x^2-x</tt> for all indeterminates <tt>x</tt>.</short_description>
 
     <short_description>Computing a Groebner Basis of a given ideal intersected with <tt>x^2-x</tt> for all indeterminates <tt>x</tt>.</short_description>
 
<syntax>
 
<syntax>
Char2.GBasisModSquares(Ideal:IDEAL):LIST
+
CharP.GBasisModSquares(Ideal:IDEAL):LIST
 
</syntax>
 
</syntax>
 
     <description>
 
     <description>
Line 9: Line 10:
 
<par/>
 
<par/>
 
This function returns the reduced Groebner basis for the given ideal intersected with the ideal generated by <tt>x^2-x</tt> for all indeterminates. If <tt>x^2-x</tt> for all indeterminates is in the ideal (e.g. the set of zeros is a subset of <tt>{0,1}^n</tt>) this method should produce the Groebner Basis much faster!
 
This function returns the reduced Groebner basis for the given ideal intersected with the ideal generated by <tt>x^2-x</tt> for all indeterminates. If <tt>x^2-x</tt> for all indeterminates is in the ideal (e.g. the set of zeros is a subset of <tt>{0,1}^n</tt>) this method should produce the Groebner Basis much faster!
Please be aware, that this is much more efficient if the term ordering is Lex, DegLex or DegRevLex. Otherwise, first a DegRevLex Groebner Basis is computed and then transformed with the <ref>FGLM.FGLM</ref>-algorithm.  
+
Please be aware, that this is much more efficient if the term ordering is <tt>Lex</tt>, <tt>DegLex</tt> or <tt>DegRevLex</tt>. Otherwise, first a DegRevLex Groebner Basis is computed and then transformed with the <ref>ApCoCoA-1:FGLM.FGLM|FGLM.FGLM</ref>-algorithm.  
  
 
<itemize>
 
<itemize>
Line 29: Line 30:
 
-------------------------------
 
-------------------------------
 
I:=Ideal(x-y^2,x^2+xy,y^3);
 
I:=Ideal(x-y^2,x^2+xy,y^3);
Char2.GBasisModSquares(I);
+
CharP.GBasisModSquares(I);
 
-- WARNING: Coeffs are not in a field
 
-- WARNING: Coeffs are not in a field
 
-- GBasis-related computations could fail to terminate or be wrong
 
-- GBasis-related computations could fail to terminate or be wrong
Line 41: Line 42:
  
 
     <seealso>
 
     <seealso>
       <see>FGLM.FGLM</see>
+
       <see>ApCoCoA-1:FGLM.FGLM|FGLM.FGLM</see>
       <see>GBasis</see>
+
       <see>ApCoCoA-1:GBasis|GBasis</see>
       <see>Introduction to CoCoAServer</see>
+
       <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see>
       <see>Introduction to Groebner Basis in CoCoA</see>
+
       <see>ApCoCoA-1:Introduction to Groebner Basis in CoCoA|Introduction to Groebner Basis in CoCoA</see>
       <see>Representation of finite fields</see>
+
       <see>ApCoCoA-1:Representation of finite fields|Representation of finite fields</see>
 
     </seealso>
 
     </seealso>
  
Line 55: Line 56:
  
 
     <key>gbasismodsquares</key>
 
     <key>gbasismodsquares</key>
     <key>char2.gbasismodsquares</key>
+
     <key>charP.gbasismodsquares</key>
 
     <key>finite field</key>
 
     <key>finite field</key>
     <wiki-category>Package_char2</wiki-category>
+
     <wiki-category>ApCoCoA-1:Package_charP</wiki-category>
 
   </command>
 
   </command>

Latest revision as of 09:55, 7 October 2020

This article is about a function from ApCoCoA-1.

CharP.GBasisModSquares

Computing a Groebner Basis of a given ideal intersected with x^2-x for all indeterminates x.

Syntax

CharP.GBasisModSquares(Ideal:IDEAL):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

This function returns the reduced Groebner basis for the given ideal intersected with the ideal generated by x^2-x for all indeterminates. If x^2-x for all indeterminates is in the ideal (e.g. the set of zeros is a subset of {0,1}^n) this method should produce the Groebner Basis much faster!

Please be aware, that this is much more efficient if the term ordering is Lex, DegLex or DegRevLex. Otherwise, first a DegRevLex Groebner Basis is computed and then transformed with the FGLM.FGLM-algorithm.

  • @param Ideal An Ideal.

  • @return The reduced Groebner Basis of the given ideal.

Example

Use R::=QQ[x,y,z];
I:=Ideal(x-y^2,x^2+xy,y^3);
GBasis(I);

[x^2 + xy, -y^2 + x, -xy]
-------------------------------
Use Z::=ZZ[x,y,z];
-- WARNING: Coeffs are not in a field
-- GBasis-related computations could fail to terminate or be wrong

-------------------------------
I:=Ideal(x-y^2,x^2+xy,y^3);
CharP.GBasisModSquares(I);
-- WARNING: Coeffs are not in a field
-- GBasis-related computations could fail to terminate or be wrong
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
[y, x]
-------------------------------


See also

FGLM.FGLM

GBasis

Introduction to CoCoAServer

Introduction to Groebner Basis in CoCoA

Representation of finite fields