Difference between revisions of "ApCoCoA-1:Gbmr.PRGB"

From ApCoCoAWiki
(Undo revision 9835 by 132.231.54.1 (Talk))
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<command>
+
 
<title>Gbmr.PRGB</title>
 
<short_description>
 
Compute reduced Groebner basis of right ideal.
 
</short_description>
 
<syntax>
 
Gbmr.PRGB(Alphabet:STRING, Rules:LIST, Order:STRING, F:LIST):LIST
 
</syntax>
 
<description>
 
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
 
<itemize>
 
<item>@param <em>Alphabet</em>: Alphabet of the rewriting system.</item>
 
<item>@param <em>Rules</em>: Rewriting rules of the rewriting system.</item>
 
<item>@param <em>Order</em>: Ordering of monoids.</item>
 
<item>@param <em>F</em>: List of generators.</item>
 
<item>@return A list of polynomials which forms a reduced Groebner basis of right ideal generated by F.</item>
 
</itemize>
 
<example>
 
Alphabet := "abc";
 
Rules := [["aa",""], ["bb",""], ["ab","c"], ["ac", "b"], ["cb", "a"]];
 
Order := "LLEX";
 
F1 := [[1,"a"], [1,"b"], [1,"c"]];
 
F := [F1];
 
Gbmr.PRGB(Alphabet, Rules, Order, F);
 
-------------------------------
 
[1+-1b,
 
1+1c+1a,
 
1c+1b+1c,
 
1c+1b+1cc,
 
1+1a+1ca,
 
1b+1cc+1bc,
 
1+1ca+1ba]
 
</example>
 
</description>
 
<seealso>
 
<see>Introduction to CoCoAServer</see>
 
</seealso>
 
<types>
 
<type>apcocoaserver</type>
 
<type>groebner</type>
 
<key>gbmr.PRGB</key>
 
<key>PRGB</key>
 
<wiki-category>Package_gbmr</wiki-category>
 
</command>
 

Latest revision as of 10:46, 9 July 2009