Difference between revisions of "ApCoCoA-1:BB.LiftAS"
From ApCoCoAWiki
m (insert version info) |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>BB.LiftAS</title> | <title>BB.LiftAS</title> | ||
Line 27: | Line 28: | ||
<type>ideal</type> | <type>ideal</type> | ||
</types> | </types> | ||
− | <see>BB.LiftASViaServer</see> | + | <see>ApCoCoA-1:BB.LiftASViaServer|BB.LiftASViaServer</see> |
− | <see>BB.LiftHomAS</see> | + | <see>ApCoCoA-1:BB.LiftHomAS|BB.LiftHomAS</see> |
− | <see>BB.LiftND</see> | + | <see>ApCoCoA-1:BB.LiftND|BB.LiftND</see> |
− | <see>BB.LiftNDViaServer</see> | + | <see>ApCoCoA-1:BB.LiftNDViaServer|BB.LiftNDViaServer</see> |
− | <see>BB.LiftHomND</see> | + | <see>ApCoCoA-1:BB.LiftHomND|BB.LiftHomND</see> |
<key>LiftAS</key> | <key>LiftAS</key> | ||
<key>BB.LiftAS</key> | <key>BB.LiftAS</key> | ||
<key>borderbasis.LiftAS</key> | <key>borderbasis.LiftAS</key> | ||
− | <wiki-category>Package_borderbasis</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_borderbasis</wiki-category> |
</command> | </command> |
Latest revision as of 09:41, 7 October 2020
This article is about a function from ApCoCoA-1. |
BB.LiftAS
Computes the border basis scheme ideal generators obtained from lifting of AS neighbours.
Syntax
BB.LiftAS(OO:LIST):LIST
Description
This command computes the generators of the border basis scheme ideal I(B_O) that result from the lifting of across-the-street neighbours.
@param OO A list of terms representing an order ideal with second element of type POLY.
@return A list of generators of the border basis scheme ideal. The polynomials will belong to the ring BBS=K[c_{ij}].
Example
Use QQ[x,y], DegRevLex; BB.LiftAS([Poly(1), x, y, xy]); [BBS :: c[1,2]c[2,3] - c[1,1]c[3,4] + c[1,4]c[4,3] - c[1,3]c[4,4], BBS :: c[2,2]c[2,3] - c[2,1]c[3,4] + c[2,4]c[4,3] - c[2,3]c[4,4] + c[1,3], BBS :: c[2,3]c[3,2] - c[3,1]c[3,4] + c[3,4]c[4,3] - c[3,3]c[4,4] - c[1,4], BBS :: c[3,4]c[4,1] - c[2,3]c[4,2] + c[2,4] - c[3,3]] -------------------------------