Difference between revisions of "ApCoCoA-1:Num.IsAppBB"
From ApCoCoAWiki
m (insert version info) |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <command> | + | {{Version|1}} |
+ | <command> | ||
<title>Num.IsAppBB</title> | <title>Num.IsAppBB</title> | ||
<short_description>Checks if a given set of polynomials is an approximate border basis.</short_description> | <short_description>Checks if a given set of polynomials is an approximate border basis.</short_description> | ||
Line 29: | Line 30: | ||
</description> | </description> | ||
<seealso> | <seealso> | ||
− | <see>Introduction to CoCoAServer</see> | + | <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see> |
</seealso> | </seealso> | ||
<types> | <types> | ||
Line 39: | Line 40: | ||
<key>IsAppBB</key> | <key>IsAppBB</key> | ||
<key>numerical.isappbb</key> | <key>numerical.isappbb</key> | ||
− | <wiki-category>Package_numerical</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_numerical</wiki-category> |
</command> | </command> |
Latest revision as of 10:29, 7 October 2020
This article is about a function from ApCoCoA-1. |
Num.IsAppBB
Checks if a given set of polynomials is an approximate border basis.
Syntax
Num.IsAppBB(Polys:LIST, OI:LIST, Epsilon:RAT):RAT
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This command checks if a set of polynomials is an approximate border basis with respect to an order ideal and a threshold number Epsilon.
@param Polys A list of polynomials.
@param OI A list containing the order ideal.
@param Epsilon Rational number
@return A number which specifies how close the given polynomials are to an exact border basis
Example
Use P::=QQ[x,y]; Res := Num.AVI([[1,1],[0,1]],0); Num.IsAppBB(Res[1],Res[2],0.1); -- CoCoAServer: computing Cpu Time = 0.031 ------------------------------- -- CoCoAServer: computing Cpu Time = 0 ------------------------------- 0 -------------------------------
See also