Difference between revisions of "ApCoCoA-1:Latte.Maximize"
From ApCoCoAWiki
(Updated example. (Skaspar)) |
m (insert version info) |
||
(7 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>Latte.Maximize</title> | <title>Latte.Maximize</title> | ||
<short_description>Maximizes the objective function over a polyhedral P given by a number of linear constraints.</short_description> | <short_description>Maximizes the objective function over a polyhedral P given by a number of linear constraints.</short_description> | ||
<syntax> | <syntax> | ||
− | Latte.Maximize(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, ObjectiveF: POLY): | + | Latte.Maximize(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, ObjectiveF: POLY):LIST |
</syntax> | </syntax> | ||
Line 13: | Line 14: | ||
<item>@param <em>LesserEq</em>: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints</item> | <item>@param <em>LesserEq</em>: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints</item> | ||
<item>@param <em>GreaterEq</em>: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints</item> | <item>@param <em>GreaterEq</em>: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints</item> | ||
− | <item>@param <em>ObjectiveF</em>: A linear | + | <item>@param <em>ObjectiveF</em>: A linear polynomial</item> |
− | <item>@return | + | <item>@return A list <tt>[[Optimal coordinates], Optimal solution, [Coeffs of objective function]]</tt></item> |
</itemize> | </itemize> | ||
<example> | <example> | ||
− | Use S ::= QQ[x,y | + | Use S ::= QQ[x,y]; |
Equations := []; | Equations := []; | ||
LesserEq := [x-1, x+y-1]; | LesserEq := [x-1, x+y-1]; | ||
GreaterEq := [x,y]; | GreaterEq := [x,y]; | ||
− | ObjectiveF := x + | + | ObjectiveF := x + y; |
Latte.Maximize(Equations, LesserEq, GreaterEq, ObjectiveF); | Latte.Maximize(Equations, LesserEq, GreaterEq, ObjectiveF); | ||
− | [[0], | + | [[1, 0], 1, [1, 1]] |
------------------------------- | ------------------------------- | ||
</example> | </example> | ||
Line 33: | Line 34: | ||
<type>apcocoaserver</type> | <type>apcocoaserver</type> | ||
</types> | </types> | ||
− | <see>GLPK.LPSolve</see> | + | <see>ApCoCoA-1:GLPK.LPSolve|GLPK.LPSolve</see> |
<key>Latte</key> | <key>Latte</key> | ||
<key>Maximize</key> | <key>Maximize</key> | ||
<key>Latte.Maximize</key> | <key>Latte.Maximize</key> | ||
− | <wiki-category>Package_latte</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_latte</wiki-category> |
</command> | </command> |
Latest revision as of 10:10, 7 October 2020
This article is about a function from ApCoCoA-1. |
Latte.Maximize
Maximizes the objective function over a polyhedral P given by a number of linear constraints.
Syntax
Latte.Maximize(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, ObjectiveF: POLY):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
@param Equations: A list of linear polynomials, which are equivalent to the equality-part of the polyhedral constraints
@param LesserEq: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints
@param GreaterEq: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints
@param ObjectiveF: A linear polynomial
@return A list [[Optimal coordinates], Optimal solution, [Coeffs of objective function]]
Example
Use S ::= QQ[x,y]; Equations := []; LesserEq := [x-1, x+y-1]; GreaterEq := [x,y]; ObjectiveF := x + y; Latte.Maximize(Equations, LesserEq, GreaterEq, ObjectiveF); [[1, 0], 1, [1, 1]] -------------------------------