Difference between revisions of "ApCoCoA-1:DA.LPot"
From ApCoCoAWiki
m (replaced <quotes> tag by real quotes) |
|||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>DA.LPot</title> | <title>DA.LPot</title> | ||
Line 6: | Line 7: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | DA.LPot returns the leading power of polynomial F wrt. the current differential term order, or the hereby induced ranking respectively. | + | <ref>ApCoCoA-1:DA.LPot|DA.LPot</ref> returns the leading power of polynomial <tt>F</tt> wrt. the current differential term order, or the hereby induced ranking respectively. |
<itemize> | <itemize> | ||
<item>@param <em>F</em> A differential polynomial.</item> | <item>@param <em>F</em> A differential polynomial.</item> | ||
− | <item>@return The leading power of F.</item> | + | <item>@return The leading power of <tt>F</tt>.</item> |
</itemize> | </itemize> | ||
<example> | <example> | ||
− | Use | + | Use QQ[x[1..2,0..20]]; |
− | Use | + | Use QQ[x[1..2,0..20]], Ord(DA.DiffTO("Lex")); |
DA.LPot(x[1,1]^2x[1,2]^2 + 1/4x[1,2]); | DA.LPot(x[1,1]^2x[1,2]^2 + 1/4x[1,2]); | ||
------------------------------- | ------------------------------- | ||
Line 23: | Line 24: | ||
<type>polynomial</type> | <type>polynomial</type> | ||
</types> | </types> | ||
− | <see>DA.DiffTO</see> | + | <see>ApCoCoA-1:DA.DiffTO|DA.DiffTO</see> |
<key>LPot</key> | <key>LPot</key> | ||
Line 29: | Line 30: | ||
<key>diffalg.LPot</key> | <key>diffalg.LPot</key> | ||
<key>differential.LPot</key> | <key>differential.LPot</key> | ||
− | <wiki-category>Package_diffalg</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_diffalg</wiki-category> |
</command> | </command> |
Latest revision as of 13:30, 29 October 2020
This article is about a function from ApCoCoA-1. |
DA.LPot
Computes the leading power of a differential polynomial.
Syntax
DA.LPot(F:POLY):POLY
Description
DA.LPot returns the leading power of polynomial F wrt. the current differential term order, or the hereby induced ranking respectively.
@param F A differential polynomial.
@return The leading power of F.
Example
Use QQ[x[1..2,0..20]]; Use QQ[x[1..2,0..20]], Ord(DA.DiffTO("Lex")); DA.LPot(x[1,1]^2x[1,2]^2 + 1/4x[1,2]); ------------------------------- x[1,2]^2 -------------------------------