ApCoCoA-1:DA.LPot: Difference between revisions
From ApCoCoAWiki
S schuster (talk | contribs) No edit summary |
m replaced <quotes> tag by real quotes |
||
(9 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Version|1}} | |||
<command> | <command> | ||
<title> | <title>DA.LPot</title> | ||
<short_description>the leading power of a differential polynomial</short_description> | <short_description>Computes the leading power of a differential polynomial.</short_description> | ||
<syntax> | <syntax> | ||
DA.LPot(F:POLY):POLY | |||
</syntax> | </syntax> | ||
<description> | <description> | ||
LPot returns the leading power of polynomial F wrt. the current differential term order, or the hereby induced ranking respectively. | <ref>ApCoCoA-1:DA.LPot|DA.LPot</ref> returns the leading power of polynomial <tt>F</tt> wrt. the current differential term order, or the hereby induced ranking respectively. | ||
<itemize> | |||
<item>@param <em>F</em> A differential polynomial.</item> | |||
<item>@return The leading power of <tt>F</tt>.</item> | |||
</itemize> | |||
<example> | <example> | ||
Use | Use QQ[x[1..2,0..20]]; | ||
Use | Use QQ[x[1..2,0..20]], Ord(DA.DiffTO("Lex")); | ||
DA.LPot(x[1,1]^2x[1,2]^2 + 1/4x[1,2]); | |||
------------------------------- | ------------------------------- | ||
x[1,2]^2 | x[1,2]^2 | ||
Line 16: | Line 21: | ||
</example> | </example> | ||
</description> | </description> | ||
<see> | <types> | ||
<wiki-category>Package_diffalg</wiki-category> | <type>polynomial</type> | ||
</types> | |||
<see>ApCoCoA-1:DA.DiffTO|DA.DiffTO</see> | |||
<key>LPot</key> | |||
<key>DA.LPot</key> | |||
<key>diffalg.LPot</key> | |||
<key>differential.LPot</key> | |||
<wiki-category>ApCoCoA-1:Package_diffalg</wiki-category> | |||
</command> | </command> |
Latest revision as of 13:30, 29 October 2020
This article is about a function from ApCoCoA-1. |
DA.LPot
Computes the leading power of a differential polynomial.
Syntax
DA.LPot(F:POLY):POLY
Description
DA.LPot returns the leading power of polynomial F wrt. the current differential term order, or the hereby induced ranking respectively.
@param F A differential polynomial.
@return The leading power of F.
Example
Use QQ[x[1..2,0..20]]; Use QQ[x[1..2,0..20]], Ord(DA.DiffTO("Lex")); DA.LPot(x[1,1]^2x[1,2]^2 + 1/4x[1,2]); ------------------------------- x[1,2]^2 -------------------------------