Difference between revisions of "ApCoCoA-1:CharP.GBasisF32"
(adding an empty dummy.) |
m (insert version info) |
||
(18 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
− | <title> | + | <title>CharP.GBasisF32</title> |
− | <short_description> | + | <short_description>Computing a Groebner Basis of a given ideal in <tt>F_32</tt>.</short_description> |
<syntax> | <syntax> | ||
− | + | CharP.GBasisF32(Ideal:IDEAL):LIST | |
</syntax> | </syntax> | ||
<description> | <description> | ||
+ | <em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | ||
+ | <par/> | ||
+ | This command computes a Groebner basis in the field <tt>F_32 = (Z/(2))[x]/(x^5 + x^2 + 1)</tt>. | ||
+ | |||
+ | <itemize> | ||
+ | <item>@param <em>Ideal</em> An Ideal in a Ring over <tt>Z</tt>, where the elements <tt>0,...,31</tt> represent the elements of the field <tt>F_32</tt>. For short, the binary representation of the number represents the coefficient vector if the polynomial in the field, e.g. <tt>11 = 8 + 2 + 1 = 2^3 + 2^1 + 2^0</tt>. So the number <tt>11</tt> corresponds to the polynomial <tt>x^3 + x + 1</tt>.</item> | ||
+ | <item>@return A Groebner Basis of the given ideal.</item> | ||
+ | </itemize> | ||
+ | |||
+ | <example> | ||
+ | Use R::=QQ[x,y,z]; | ||
+ | I:=Ideal(x-y^2,x^2+xy,y^3); | ||
+ | GBasis(I); | ||
+ | |||
+ | [x^2 + xy, -y^2 + x, -xy] | ||
+ | ------------------------------- | ||
+ | Use Z::=ZZ[x,y,z]; | ||
+ | -- WARNING: Coeffs are not in a field | ||
+ | -- GBasis-related computations could fail to terminate or be wrong | ||
+ | |||
+ | ------------------------------- | ||
+ | I:=Ideal(x-y^2,x^2+xy,y^3); | ||
+ | CharP.GBasisF32(I); | ||
+ | -- WARNING: Coeffs are not in a field | ||
+ | -- GBasis-related computations could fail to terminate or be wrong | ||
+ | -- CoCoAServer: computing Cpu Time = 0 | ||
+ | ------------------------------- | ||
+ | [y^2 + 27x, x^2, xy] | ||
+ | ------------------------------- | ||
+ | </example> | ||
</description> | </description> | ||
+ | |||
<seealso> | <seealso> | ||
− | <see>GBasis</see> | + | <see>ApCoCoA-1:GBasis|GBasis</see> |
− | <see> | + | <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see> |
− | <see> | + | <see>ApCoCoA-1:Introduction to Groebner Basis in CoCoA|Introduction to Groebner Basis in CoCoA</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF2|CharP.GBasisF2</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF4|CharP.GBasisF4</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF8|CharP.GBasisF8</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF16|CharP.GBasisF16</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF64|CharP.GBasisF64</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF128|CharP.GBasisF128</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF256|CharP.GBasisF256</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF512|CharP.GBasisF512</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF1024|CharP.GBasisF1024</see> |
− | <see> | + | <see>ApCoCoA-1:CharP.GBasisF2048|CharP.GBasisF2048</see> |
− | + | <see>ApCoCoA-1:CharP.GBasisModSquares|CharP.GBasisModSquares</see> | |
+ | <see>ApCoCoA-1:Representation of finite fields|Representation of finite fields</see> | ||
</seealso> | </seealso> | ||
− | <key> | + | |
− | <key> | + | <types> |
− | <wiki-category> | + | <type>apcocoaserver</type> |
+ | <type>ideal</type> | ||
+ | <type>groebner</type> | ||
+ | </types> | ||
+ | |||
+ | <key>GBasisF32</key> | ||
+ | <key>charP.GBasisF32</key> | ||
+ | <key>finite field</key> | ||
+ | <wiki-category>ApCoCoA-1:Package_charP</wiki-category> | ||
</command> | </command> |
Latest revision as of 09:54, 7 October 2020
This article is about a function from ApCoCoA-1. |
CharP.GBasisF32
Computing a Groebner Basis of a given ideal in F_32.
Syntax
CharP.GBasisF32(Ideal:IDEAL):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This command computes a Groebner basis in the field F_32 = (Z/(2))[x]/(x^5 + x^2 + 1).
@param Ideal An Ideal in a Ring over Z, where the elements 0,...,31 represent the elements of the field F_32. For short, the binary representation of the number represents the coefficient vector if the polynomial in the field, e.g. 11 = 8 + 2 + 1 = 2^3 + 2^1 + 2^0. So the number 11 corresponds to the polynomial x^3 + x + 1.
@return A Groebner Basis of the given ideal.
Example
Use R::=QQ[x,y,z]; I:=Ideal(x-y^2,x^2+xy,y^3); GBasis(I); [x^2 + xy, -y^2 + x, -xy] ------------------------------- Use Z::=ZZ[x,y,z]; -- WARNING: Coeffs are not in a field -- GBasis-related computations could fail to terminate or be wrong ------------------------------- I:=Ideal(x-y^2,x^2+xy,y^3); CharP.GBasisF32(I); -- WARNING: Coeffs are not in a field -- GBasis-related computations could fail to terminate or be wrong -- CoCoAServer: computing Cpu Time = 0 ------------------------------- [y^2 + 27x, x^2, xy] -------------------------------
See also
Introduction to Groebner Basis in CoCoA
Representation of finite fields