Difference between revisions of "ApCoCoA-1:BB.HomNDgens"
From ApCoCoAWiki
(Shortened short description) |
m (insert version info) |
||
(21 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
− | + | <title>BB.HomNDgens</title> | |
− | + | <short_description>Computes the generators of the vanishing ideal of a homogeneous border basis scheme.</short_description> | |
+ | |||
<syntax> | <syntax> | ||
− | + | BB.HomNDgens(K:INT,OO:LIST):LIST | |
</syntax> | </syntax> | ||
− | + | <description> | |
− | Computes the generators of the vanishing ideal of the | + | Computes the generators of the vanishing ideal of the homogeneous border basis scheme corresponding to the lifting of the <tt>K</tt>-th element of <ref>ApCoCoA-1:BB.NDneighbors|BB.NDneighbors</ref>(OO). |
− | </ | + | <itemize> |
− | <key> | + | <item>@param <em>K</em> An integer in the range 1..Len(<ref>ApCoCoA-1:BB.NDneighbors|BB.NDneighbors</ref>(OO)).</item> |
− | + | <item>@param <em>OO</em> A list of terms representing an order ideal.</item> | |
− | + | <item>@return A list of generators of the vanishing ideal. The polynomials will belong to the ring BBS=K[c_{ij}].</item> | |
− | + | </itemize> | |
+ | </description> | ||
+ | <types> | ||
+ | <type>borderbasis</type> | ||
+ | <type>ideal</type> | ||
+ | </types> | ||
+ | <see>ApCoCoA-1:BB.ASgens|BB.ASgens</see> | ||
+ | <see>ApCoCoA-1:BB.HomASgens|BB.HomASgens</see> | ||
+ | <see>ApCoCoA-1:BB.NDgens|BB.NDgens</see> | ||
+ | |||
+ | <key>HomNDgens</key> | ||
+ | <key>BB.HomNDgens</key> | ||
+ | <key>borderbasis.HomNDgens</key> | ||
+ | <wiki-category>ApCoCoA-1:Package_borderbasis</wiki-category> | ||
</command> | </command> |
Latest revision as of 09:41, 7 October 2020
This article is about a function from ApCoCoA-1. |
BB.HomNDgens
Computes the generators of the vanishing ideal of a homogeneous border basis scheme.
Syntax
BB.HomNDgens(K:INT,OO:LIST):LIST
Description
Computes the generators of the vanishing ideal of the homogeneous border basis scheme corresponding to the lifting of the K-th element of BB.NDneighbors(OO).
@param K An integer in the range 1..Len(BB.NDneighbors(OO)).
@param OO A list of terms representing an order ideal.
@return A list of generators of the vanishing ideal. The polynomials will belong to the ring BBS=K[c_{ij}].