Difference between revisions of "Package zerodim"
(20 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{Version|2|[[:Category:ApCoCoA-1:Package ZeroDim]]}} | {{Version|2|[[:Category:ApCoCoA-1:Package ZeroDim]]}} | ||
− | This page describes the zerodim package. The package contains various functions for computing algebraic invariants of zero-dimensional schemes and related computations. For a complete list of functions, see [[:Category:Package zerodim]]. | + | This page describes the <code>zerodim</code> package. The package contains various functions for computing algebraic invariants of zero-dimensional schemes and related computations. For a complete list of functions, see also [[:Category:Package zerodim]]. |
− | == Algebraic Invariants | + | == Algebraic Invariants == |
− | Let <math>K</math> be a field, let <math>P = K[x_1,\ldots,x_n]</math> be the | + | Let <math>K</math> be a field, let <math>P = K[x_1,\ldots,x_n]</math> be the polynomial ring over <math>K</math> in <math>n</math> indeterminates, and let <math>I</math> be a 0-dimensional ideal of <math>P</math> and <math>R=P/I</math>. Then <math>I</math> defines a 0-dimensional scheme <math>X</math> in the affine <math>n</math>-space. |
+ | Consider the canonical multiplication map | ||
+ | :<math>\mu: R^e=R\otimes_K R \longrightarrow R, (f,g)\mapsto fg</math> | ||
+ | and its kernel <math>J=\mathrm{Ker}(\mu)</math>. Then <math>J/J^2</math> is a finitely generated <math>R</math>-module | ||
+ | and <math>\mathrm{Ann}_{R^e}(J)</math> is an ideal of the enveloping algebra <math>R^e</math>. | ||
+ | * The ideal <math>\vartheta_N(R/K) :=\mu(\mathrm{Ann}_{R^e}(J))</math> is called the <em>Noether different</em> of the algebra <math>R/K</math>. | ||
+ | * The <math>R</math>-module <math>\Omega^1_{R/K}:=J/J^2</math> is called the <em>module of Kaehler differential 1-forms</em> of the algebra <math>R/K</math>. | ||
+ | * The <math>K</math>-linear map <math>d:R\rightarrow\Omega^1_{R/K}, f\mapsto f\otimes 1-1\otimes f + J^2</math>, is called the <em>universal derivation</em> of the algebra <math>R/K</math>. | ||
+ | * For <math>m\ge 0</math>, the exterior power <math>\Omega^m_{R/K}:=\wedge_R^m \Omega^1_{R/K}</math> is called the <em>module of Kaehler differential m-forms</em> of the algebra <math>R/K</math>. | ||
+ | * For <math>m\ge 0</math> the <math>m</math>-th Fitting ideal <math>\vartheta_X^{(m)}(R/K)</math> of the module of Kaehler differential 1-forms <math>\Omega^1_{R/K}</math> is called the <em>Kaehler different</em> of the algebra <math>R/K</math>. | ||
− | + | More generally, for any <math>K</math>-algebra <math>T/S</math>, we can define the Noether different, module of Kaehler differential m-forms, Kaehler different of <math>T/S</math> analogously. In particular, if <math>T/S</math> is graded, then all these invariants are also graded. | |
− | + | ||
− | + | Now let us embed the scheme <math>X</math> in the projective <math>n</math>-space via <math>X \subseteq D_+(x_0) \subseteq\mathbb{P}^n</math>, where <math>x_0</math> is a new indeterminate. Set <math>S:=P[x_0] = K[x_0,\dots,x_n]</math> and equip <math>S</math> with the standard grading. The homogeneous vanishing ideal of <math>X</math> is the homogenization of <math>I</math> with respect to <math>x_0</math> and denoted by <math>I_X</math>, and the homogeneous coordinate ring of <math>X</math> is the graded 1-dimensional ring <math>R_X = S/I_X</math>. In this case <math>K[x_0]</math> is the Noetherian normalization of <math>R_X</math>, and hence we can define the above invariants for the graded algebra <math>R_X/K[x_0]</math>. Moreover, we have the following further invariants. | |
− | + | ||
− | + | * The graded <math>R_X</math>-module <math>\omega_{R_X} = \mathrm{Hom}_{K[x_0]}(R,K[x_0])(-1)</math> is called the <em>canonical module</em> of the algebra <math>R_X/K[x_0]</math>. | |
− | + | * The graded locolization <math>Q^h(R_X)</math> of <math>R_X</math> at <math>x_0</math> is called the <em>homogeneous ring of quotients</em> of <math>R_X</math>. | |
+ | * When the scheme <math>X</math> is reduced (more general, locally Gorenstein), there is an injection <math>\omega_{R_X}\hookrightarrow Q^h(R_X)</math> and the inverse of <math>\omega_{R_X}</math> in <math>Q^h(R_X)</math> is called the <em>Dedekind different</em> of <math>R_X/K[x_0]</math>. | ||
+ | |||
+ | Many interesting properties of the scheme <math>X</math> are reflexed by the algebraic structure of the above invariants. | ||
== Package Description == | == Package Description == | ||
− | + | The <code>zerodim</code> package provides functions for computing the introduced invariants of zero-dimensional schemes. In the graded case the package also provides functions for computations of the Hilbert functions of these invariants. Alias of the package is <code>ZD</code>. | |
− | === | + | === List of main functions === |
− | + | ||
+ | [[/MinQuotIdeal/]] | ||
+ | <pre> | ||
+ | MinQuotIdeal(P, I, J): computes a min. homog. system | ||
+ | of generators of homog. ideal (I+J)/I. | ||
+ | input: P=K[x[1..N]], I and J homog. ideals of P | ||
+ | output: list of polys | ||
+ | </pre> | ||
+ | [[/AffineNoetherDiff/]] | ||
+ | <pre> | ||
+ | AffineNoetherDiff(P, I): computes a generating system"; | ||
+ | of the Noether different of algebra R/K, R=P/I"; | ||
+ | input: P=K[x[1..N]], I an ideal of P"; | ||
+ | output: list of polys"; | ||
+ | </pre> | ||
+ | [[/NoetherDifferent/]] | ||
+ | <pre> | ||
+ | NoetherDifferent(P, I): computes a min.homog. gen. system | ||
+ | of the Noether different of algebra R/K, R=P/I. | ||
+ | input: P=K[x[1..N]], I an homog. ideal of P | ||
+ | output: list of polys | ||
+ | </pre> | ||
+ | [[/NoetherDifferentRel/]] | ||
+ | <pre> | ||
+ | NoetherDifferentRel(P, Ix): computes a min.homog. gen. system | ||
+ | of the Noether different of R/K[x[0]], R=P/Ix. | ||
+ | input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X | ||
+ | in P^n_K such that intersect(X,Z(x[0])) is empty | ||
+ | output: list of polys | ||
+ | </pre> | ||
+ | [[/HilbertNoetherDiff/]] | ||
+ | <pre> | ||
+ | HilbertNoetherDiff(P, I): computes the Hilbert function | ||
+ | of the Noether different of R/K, R=P/I. | ||
+ | input: P=K[x[1..N]], I an homog. ideal of P | ||
+ | output: the Hilbert function | ||
+ | </pre> | ||
+ | [[/HilbertNoetherDiffRel/]] | ||
+ | <pre> | ||
+ | HilbertNoetherDiffRel(P, Ix): computes the Hilbert function | ||
+ | of the Noether different of R/K[x[0]], R=P/Ix. | ||
+ | input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X | ||
+ | in P^n_K such that intersect(X,Z(x[0])) is empty | ||
+ | output: the Hilbert function | ||
+ | </pre> | ||
+ | [[/AffineKaehlerDiff/]] | ||
<pre> | <pre> | ||
− | + | AffineKaehlerDiff(P,I,m): computes a generating system | |
+ | of the m-th Kaehler different of algebra R/K, R=P/I. | ||
+ | input: P=K[x[1..N]], I an ideal of P, m non-neg integer | ||
+ | output: list of polys | ||
</pre> | </pre> | ||
− | + | [[/KaehlerDifferent/]] | |
<pre> | <pre> | ||
− | + | KaehlerDifferent(P,I,m): computes a min.homog.gen. system | |
+ | of the m-th Kaehler different of algebra R/K, R=P/I. | ||
+ | input: P=K[x[1..N]], I an homog. ideal, m non-neg integer | ||
+ | output: list of polys | ||
</pre> | </pre> | ||
− | + | [[/KaehlerDifferentRel/]] | |
− | |||
<pre> | <pre> | ||
− | + | KaehlerDifferentRel(P, Ix): computes a min. homog.gen. system | |
+ | of the Kaehler different of R/K[x[0]], R=P/Ix. | ||
+ | input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X | ||
+ | in P^n_K such that intersect(X,Z(x[0])) is empty | ||
+ | output: list of polys | ||
</pre> | </pre> | ||
− | + | [[/HilbertKaehlerDiff/]] | |
− | |||
− | |||
<pre> | <pre> | ||
− | + | HilbertKaehlerDiff(P,I,m): computes the Hilbert function | |
+ | of the m-th Kaehler different of R/K, R=P/I. | ||
+ | input: P=K[x[1..N]], I an homog. ideal, m non-neg integer | ||
+ | output: the Hilbert function | ||
</pre> | </pre> | ||
− | + | [[/HilbertKaehlerDiffRel/]] | |
− | === | + | <pre> |
− | + | HilbertKaehlerDiffRel(P, Ix): computes the Hilbert function | |
+ | of the Kaehler different of R/K[x[0]], R=P/Ix. | ||
+ | input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X | ||
+ | in P^n_K such that intersect(X,Z(x[0])) is empty | ||
+ | output: the Hilbert function | ||
+ | </pre> | ||
+ | [[/AffBMAlgo/]] | ||
+ | <pre> | ||
+ | AffBMAlgo(LX,O): computes a list [GBasis,OrderIdeal,Separators] | ||
+ | for a 0-dim ideal with its primary components LX. | ||
+ | input: P=K[x[1..N]], LX list of 0-dim primary ideals | ||
+ | q_j associated to a 0-dim ideal of P | ||
+ | O list of K-bases of P/q_j | ||
+ | output: [GBasis,OrderIdeal,Separators] of P/intersection(q_j) | ||
+ | </pre> | ||
+ | [[/DedekindDifferentRel/]] | ||
+ | <pre> | ||
+ | DedekindDifferentRel(P,Points): computes a min.homog.gen. system | ||
+ | of the Dedekind different of R/K[x[0]], where R=P/Ix | ||
+ | and Ix is the vanishing ideal of Points. | ||
+ | input: P=K[x[0..N]], Points=list of points in P^n_K | ||
+ | not in Z(x[0]) | ||
+ | output: list of polys | ||
+ | </pre> | ||
+ | [[/HilbertDedekindDiffRel/]] | ||
+ | <pre> | ||
+ | HilbertDedekindDiffRel(P,Points): computes the Hilbert function | ||
+ | of the Dedekind different of R/K[x[0]], where R=P/Ix | ||
+ | and Ix is the vanishing ideal of Points. | ||
+ | input: P=K[x[0..N]], Points=list of points in P^n_K | ||
+ | not in Z(x[0]) | ||
+ | output: the Hilbert function | ||
+ | </pre> | ||
+ | [[/KaehlerDiffModule/]] | ||
+ | <pre> | ||
+ | KaehlerDiffModule(P, Ix, m): computes a submodule U of P^t | ||
+ | such that the module of Kaehler differential m-form | ||
+ | has Omega^m(R/K)=P^t/U, R=P/Ix, t=binom{n}{m}. | ||
+ | input: P=K[x[1..N]], Ix a non-zero ideal, m non-neg integer | ||
+ | output: submodule with generators | ||
+ | </pre> | ||
+ | [[/HilbertKDM/]] | ||
<pre> | <pre> | ||
− | + | HilbertKDM(P, Ix, m): computes the Hilbert function of | |
+ | the module of Kaehler differential m-form. | ||
+ | input: P=K[x[1..N]], Ix a non-zero homog. ideal, 0<m<n+1 | ||
+ | output: HF of Omega^m(R/K) | ||
</pre> | </pre> | ||
− | + | [[/KDMOfPoints/]] | |
<pre> | <pre> | ||
− | + | KDMOfPoints(P,Points,m): computes a submodule U of P^t such that | |
+ | the module of Kaehler differential m-form has | ||
+ | Omega^m(R/K)=P^t/U, R=P/I_Points, t=binom{n}{m}. | ||
+ | input: P=K[x[1..N]], Points=list of points, m non-neg integer | ||
+ | output: submodule with generators | ||
</pre> | </pre> | ||
− | + | [[/KDMOfProjectivePoints/]] | |
− | |||
<pre> | <pre> | ||
− | + | KDMOfProjectivePoints(P,Points,m): computes a submodule U of P^t | |
+ | such that the module of Kaehler differential m-form has | ||
+ | Omega^m(R/K)=P^t/U, R=P/I_Points, t=binom{n}{m}. | ||
+ | input: P=K[x[1..N]], Points=list of projective points, | ||
+ | m non-neg integer | ||
+ | output: submodule with generators | ||
</pre> | </pre> | ||
− | + | [[/KDMRel/]] | |
<pre> | <pre> | ||
− | + | KDMRel(P, Ix, m): computes a submodule U of P^t such that | |
+ | the module of Kaehler differential m-form of R/K[x[0]] | ||
+ | has Omega^m(R/K[x[0]])=P^t/U, R=P/Ix, t=binom{n}{m}. | ||
+ | input: P=K[x[0..N]], Ix a non-zero homog. ideal such that | ||
+ | K[x[0]] is the Noetherian normalization of R, | ||
+ | m non-neg integer | ||
+ | output: submodule with generators | ||
</pre> | </pre> | ||
− | + | [[/HilbertKDMRel/]] | |
− | |||
− | |||
− | |||
<pre> | <pre> | ||
− | + | HilbertKDMRel(P, Ix, m): computes the Hilbert function of | |
− | + | the module of Kaehler differential m-form of R/K[x[0]]. | |
− | + | input: P=K[x[0..N]], Ix a non-zero homog. ideal such that | |
+ | K[x[0]] is the Noetherian normalization of R, | ||
+ | m non-neg integer"; | ||
+ | output: HF of Omega^m(R/K[x_0]) | ||
</pre> | </pre> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | === Examples for computations === | |
− | + | Now let us apply the <code>zerodim</code> package to some concrete examples. Recall that the alias of the package is <code>ZD</code>, and so to call a function from this package in computation one uses [[/ZD.functions-name/]]. | |
− | |||
− | |||
− | |||
− | |||
− | + | Consider the first example, where X is the scheme defined by the homogeneous ideal Ix. | |
− | + | <pre> | |
− | [[/ | + | Use P ::= QQ[X[0..2]]; |
− | [[/ | + | Ix := ideal(X[0]*X[1] -X[1]^2, X[1]^2*X[2] -X[1]*X[2]^2, 2*X[0]^2*X[2] -3*X[0]*X[2]^2 +X[2]^3); |
− | + | </pre> | |
− | + | Then we calculate the differents of X as follows: | |
− | + | <pre> | |
− | + | -- Computes the Noether different of R/K: | |
+ | ZD.NoetherDifferent(P,Ix); | ||
+ | [] | ||
+ | -- Computes the Noether different of R/K[x_0]: | ||
+ | ZD.NoetherDifferentRel(P,Ix); | ||
+ | [X[1]^3 -2*X[1]*X[2]^2, 2*X[0]^3 -6*X[0]*X[2]^2 -2*X[1]*X[2]^2 +3*X[2]^3, X[2]^4] | ||
+ | -- Computes the Hilbert function of the Noether different of R/K[x_0]: | ||
+ | ZD.HilbertNoetherDiffRel(P,Ix); | ||
+ | H(0) = 0 | ||
+ | H(1) = 0 | ||
+ | H(2) = 0 | ||
+ | H(3) = 2 | ||
+ | H(t) = 5, for t >= 4 | ||
+ | -- Computes the Kaehler different of R/K[x_0]: | ||
+ | ZD.KaehlerDifferentRel(P,Ix); | ||
+ | [X[1]^3 -2*X[1]*X[2]^2, 2*X[0]^3 -6*X[0]*X[2]^2 -2*X[1]*X[2]^2 +3*X[2]^3, X[2]^4] | ||
+ | -- Computes the Hilbert function of the Kaehler different of R/K[x_0]: | ||
+ | ZD.HilbertKaehlerDiffRel(P,Ix); | ||
+ | H(0) = 0 | ||
+ | H(1) = 0 | ||
+ | H(2) = 0 | ||
+ | H(3) = 2 | ||
+ | H(t) = 5, for t >= 4 | ||
+ | </pre> | ||
+ | The module of Kaehler differentials 1-forms of R/K is determined by a submodule U of P^3 which is computed by: | ||
+ | <pre> | ||
+ | U := ZD.KaehlerDiffModule(P,Ix,1); indent(U); | ||
+ | SubmoduleRows(F, matrix([ | ||
+ | [X[1], X[0] -2*X[1], 0], | ||
+ | [0, 2*X[1]*X[2] -X[2]^2, X[1]^2 -2*X[1]*X[2]], | ||
+ | [4*X[0]*X[2] -3*X[2]^2, 0, 2*X[0]^2 -6*X[0]*X[2] +3*X[2]^2], | ||
+ | [X[0]*X[1] -X[1]^2, 0, 0], | ||
+ | [2*X[0]^2*X[2] -3*X[0]*X[2]^2 +X[2]^3, 0, 0], | ||
+ | [0, X[0]*X[1] -X[1]^2, 0], | ||
+ | [0, 2*X[0]^2*X[2] -3*X[0]*X[2]^2 +X[2]^3, 0], | ||
+ | [0, 0, X[0]*X[1] -X[1]^2], | ||
+ | [0, 0, X[1]^2*X[2] -X[1]*X[2]^2], | ||
+ | [0, 0, 2*X[0]^2*X[2] -3*X[0]*X[2]^2 +X[2]^3] | ||
+ | ])) | ||
+ | </pre> | ||
− | + | Next, let us consider the example, where X is given by a set of 10 points: | |
− | |||
<pre> | <pre> | ||
− | Use P ::= QQ[ | + | Use P::=QQ[X[0..2]]; |
− | + | Points := [[1,1,0], [1,3,0], [1,1,1], [1,2,1], [1,3,1], [1,0,2], [1,1,2], [1,2,2], [1,3,2], [1,3,3]]; | |
− | + | </pre> | |
− | + | We can compute the Dedekind different of X and its Hilbert function by: | |
− | + | <pre> | |
− | + | ZD.DedekindDifferentRel(P,Points); | |
+ | [X[2]^6, X[1]*X[2]^5, X[0]*X[2]^5, X[1]^2*X[2]^4, X[0]*X[1]*X[2]^4, | ||
+ | X[0]^2*X[2]^4, X[1]^3*X[2]^3, X[0]*X[1]^2*X[2]^3, X[1]^6, X[0]*X[1]^5] | ||
+ | ZD.HilbertDedekindDiffRel(P,Points); | ||
+ | H(0) = 0 | ||
+ | H(1) = 0 | ||
+ | H(2) = 0 | ||
+ | H(3) = 0 | ||
+ | H(4) = 0 | ||
+ | H(5) = 0 | ||
+ | H(t) = 10, for t >= 6 | ||
+ | </pre> | ||
+ | The module of Kaehler differential 3-forms of R/K can be computed by | ||
+ | <pre> | ||
+ | ZD.KDMOfProjectivePoints(P,Points,3); | ||
+ | submodule(FreeModule(RingWithID(144, "QQ[X[0],X[1],X[2]]"), 1), | ||
+ | [[(-1/2)*X[0]*X[1]^2 +(-19/27)*X[1]^3 +(-85/18)*X[0]^2*X[2] +(563/27)*X[0]*X[1]*X[2] | ||
+ | +(85/27)*X[1]^2*X[2] +(-61/3)*X[0]*X[2]^2 +(-301/18)*X[1]*X[2]^2 +(47/3)*X[2]^3], | ||
+ | [-X[0]^2*X[2] +(3/2)*X[0]*X[2]^2 +(-1/2)*X[2]^3], [-2*X[0]^2*X[1] +4*X[0]*X[1]^2 | ||
+ | +(-4/3)*X[1]^3 +X[1]^2*X[2] +(-23/6)*X[0]*X[2]^2 +(-4/3)*X[1]*X[2]^2 +(13/6)*X[2]^3], | ||
+ | [-X[0]^3 +(13/3)*X[0]*X[1]^2 +(-16/9)*X[1]^3 +(11/6)*X[1]^2*X[2] +(-253/36)*X[0]*X[2]^2 | ||
+ | +(-22/9)*X[1]*X[2]^2 +(143/36)*X[2]^3], | ||
+ | [(40/9)*X[0]*X[1]^2 +(-52/27)*X[1]^3 +X[0]*X[1]*X[2] +(19/9)*X[1]^2*X[2] | ||
+ | +(-563/54)*X[0]*X[2]^2 +(-85/27)*X[1]*X[2]^2 +(301/54)*X[2]^3], | ||
+ | [2*X[0]*X[1]*X[2] -2*X[0]*X[2]^2 +(-3/2)*X[1]*X[2]^2 +(3/2)*X[2]^3], | ||
+ | [3*X[0]^2*X[2] +(-11/3)*X[0]*X[2]^2 +X[2]^3], | ||
+ | [2*X[0]*X[1]^2 +(-4/3)*X[1]^3 -2*X[0]*X[2]^2 +(23/6)*X[1]*X[2]^2 +(-5/2)*X[2]^3], | ||
+ | [3*X[0]^2*X[1] +(-13/9)*X[1]^3 +(-11/3)*X[0]*X[2]^2 +(253/36)*X[1]*X[2]^2 +(-55/12)*X[2]^3], | ||
+ | [4*X[0]^3 +(-40/27)*X[1]^3 +(-1/2)*X[1]^2*X[2] +(-85/18)*X[0]*X[2]^2 +(563/54)*X[1]*X[2]^2 +(-61/9)*X[2]^3] | ||
+ | ]) | ||
</pre> | </pre> | ||
− | + | [[Category:Package zerodim]] | |
− | + | [[Category:Package alggeozd]] | |
− | [[Category:Package | + | [[Category:Package borderbasis]] |
[[Category:ApCoCoA Packages]] | [[Category:ApCoCoA Packages]] |
Latest revision as of 23:25, 17 November 2022
This article is about a function from ApCoCoA-2. If you are looking for the ApCoCoA-1 version of it, see Category:ApCoCoA-1:Package ZeroDim. |
This page describes the zerodim
package. The package contains various functions for computing algebraic invariants of zero-dimensional schemes and related computations. For a complete list of functions, see also Category:Package zerodim.
Algebraic Invariants
Let be a field, let be the polynomial ring over in indeterminates, and let be a 0-dimensional ideal of and . Then defines a 0-dimensional scheme in the affine -space. Consider the canonical multiplication map
and its kernel . Then is a finitely generated -module and is an ideal of the enveloping algebra .
- The ideal is called the Noether different of the algebra .
- The -module is called the module of Kaehler differential 1-forms of the algebra .
- The -linear map , is called the universal derivation of the algebra .
- For , the exterior power is called the module of Kaehler differential m-forms of the algebra .
- For the -th Fitting ideal of the module of Kaehler differential 1-forms is called the Kaehler different of the algebra .
More generally, for any -algebra , we can define the Noether different, module of Kaehler differential m-forms, Kaehler different of analogously. In particular, if is graded, then all these invariants are also graded.
Now let us embed the scheme in the projective -space via , where is a new indeterminate. Set and equip with the standard grading. The homogeneous vanishing ideal of is the homogenization of with respect to and denoted by , and the homogeneous coordinate ring of is the graded 1-dimensional ring . In this case is the Noetherian normalization of , and hence we can define the above invariants for the graded algebra . Moreover, we have the following further invariants.
- The graded -module is called the canonical module of the algebra .
- The graded locolization of at is called the homogeneous ring of quotients of .
- When the scheme is reduced (more general, locally Gorenstein), there is an injection and the inverse of in is called the Dedekind different of .
Many interesting properties of the scheme are reflexed by the algebraic structure of the above invariants.
Package Description
The zerodim
package provides functions for computing the introduced invariants of zero-dimensional schemes. In the graded case the package also provides functions for computations of the Hilbert functions of these invariants. Alias of the package is ZD
.
List of main functions
MinQuotIdeal(P, I, J): computes a min. homog. system of generators of homog. ideal (I+J)/I. input: P=K[x[1..N]], I and J homog. ideals of P output: list of polys
AffineNoetherDiff(P, I): computes a generating system"; of the Noether different of algebra R/K, R=P/I"; input: P=K[x[1..N]], I an ideal of P"; output: list of polys";
NoetherDifferent(P, I): computes a min.homog. gen. system of the Noether different of algebra R/K, R=P/I. input: P=K[x[1..N]], I an homog. ideal of P output: list of polys
NoetherDifferentRel(P, Ix): computes a min.homog. gen. system of the Noether different of R/K[x[0]], R=P/Ix. input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X in P^n_K such that intersect(X,Z(x[0])) is empty output: list of polys
HilbertNoetherDiff(P, I): computes the Hilbert function of the Noether different of R/K, R=P/I. input: P=K[x[1..N]], I an homog. ideal of P output: the Hilbert function
HilbertNoetherDiffRel(P, Ix): computes the Hilbert function of the Noether different of R/K[x[0]], R=P/Ix. input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X in P^n_K such that intersect(X,Z(x[0])) is empty output: the Hilbert function
AffineKaehlerDiff(P,I,m): computes a generating system of the m-th Kaehler different of algebra R/K, R=P/I. input: P=K[x[1..N]], I an ideal of P, m non-neg integer output: list of polys
KaehlerDifferent(P,I,m): computes a min.homog.gen. system of the m-th Kaehler different of algebra R/K, R=P/I. input: P=K[x[1..N]], I an homog. ideal, m non-neg integer output: list of polys
KaehlerDifferentRel(P, Ix): computes a min. homog.gen. system of the Kaehler different of R/K[x[0]], R=P/Ix. input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X in P^n_K such that intersect(X,Z(x[0])) is empty output: list of polys
HilbertKaehlerDiff(P,I,m): computes the Hilbert function of the m-th Kaehler different of R/K, R=P/I. input: P=K[x[1..N]], I an homog. ideal, m non-neg integer output: the Hilbert function
HilbertKaehlerDiffRel(P, Ix): computes the Hilbert function of the Kaehler different of R/K[x[0]], R=P/Ix. input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X in P^n_K such that intersect(X,Z(x[0])) is empty output: the Hilbert function
AffBMAlgo(LX,O): computes a list [GBasis,OrderIdeal,Separators] for a 0-dim ideal with its primary components LX. input: P=K[x[1..N]], LX list of 0-dim primary ideals q_j associated to a 0-dim ideal of P O list of K-bases of P/q_j output: [GBasis,OrderIdeal,Separators] of P/intersection(q_j)
DedekindDifferentRel(P,Points): computes a min.homog.gen. system of the Dedekind different of R/K[x[0]], where R=P/Ix and Ix is the vanishing ideal of Points. input: P=K[x[0..N]], Points=list of points in P^n_K not in Z(x[0]) output: list of polys
HilbertDedekindDiffRel(P,Points): computes the Hilbert function of the Dedekind different of R/K[x[0]], where R=P/Ix and Ix is the vanishing ideal of Points. input: P=K[x[0..N]], Points=list of points in P^n_K not in Z(x[0]) output: the Hilbert function
KaehlerDiffModule(P, Ix, m): computes a submodule U of P^t such that the module of Kaehler differential m-form has Omega^m(R/K)=P^t/U, R=P/Ix, t=binom{n}{m}. input: P=K[x[1..N]], Ix a non-zero ideal, m non-neg integer output: submodule with generators
HilbertKDM(P, Ix, m): computes the Hilbert function of the module of Kaehler differential m-form. input: P=K[x[1..N]], Ix a non-zero homog. ideal, 0<m<n+1 output: HF of Omega^m(R/K)
KDMOfPoints(P,Points,m): computes a submodule U of P^t such that the module of Kaehler differential m-form has Omega^m(R/K)=P^t/U, R=P/I_Points, t=binom{n}{m}. input: P=K[x[1..N]], Points=list of points, m non-neg integer output: submodule with generators
KDMOfProjectivePoints(P,Points,m): computes a submodule U of P^t such that the module of Kaehler differential m-form has Omega^m(R/K)=P^t/U, R=P/I_Points, t=binom{n}{m}. input: P=K[x[1..N]], Points=list of projective points, m non-neg integer output: submodule with generators
KDMRel(P, Ix, m): computes a submodule U of P^t such that the module of Kaehler differential m-form of R/K[x[0]] has Omega^m(R/K[x[0]])=P^t/U, R=P/Ix, t=binom{n}{m}. input: P=K[x[0..N]], Ix a non-zero homog. ideal such that K[x[0]] is the Noetherian normalization of R, m non-neg integer output: submodule with generators
HilbertKDMRel(P, Ix, m): computes the Hilbert function of the module of Kaehler differential m-form of R/K[x[0]]. input: P=K[x[0..N]], Ix a non-zero homog. ideal such that K[x[0]] is the Noetherian normalization of R, m non-neg integer"; output: HF of Omega^m(R/K[x_0])
Examples for computations
Now let us apply the zerodim
package to some concrete examples. Recall that the alias of the package is ZD
, and so to call a function from this package in computation one uses ZD.functions-name.
Consider the first example, where X is the scheme defined by the homogeneous ideal Ix.
Use P ::= QQ[X[0..2]]; Ix := ideal(X[0]*X[1] -X[1]^2, X[1]^2*X[2] -X[1]*X[2]^2, 2*X[0]^2*X[2] -3*X[0]*X[2]^2 +X[2]^3);
Then we calculate the differents of X as follows:
-- Computes the Noether different of R/K: ZD.NoetherDifferent(P,Ix); [] -- Computes the Noether different of R/K[x_0]: ZD.NoetherDifferentRel(P,Ix); [X[1]^3 -2*X[1]*X[2]^2, 2*X[0]^3 -6*X[0]*X[2]^2 -2*X[1]*X[2]^2 +3*X[2]^3, X[2]^4] -- Computes the Hilbert function of the Noether different of R/K[x_0]: ZD.HilbertNoetherDiffRel(P,Ix); H(0) = 0 H(1) = 0 H(2) = 0 H(3) = 2 H(t) = 5, for t >= 4 -- Computes the Kaehler different of R/K[x_0]: ZD.KaehlerDifferentRel(P,Ix); [X[1]^3 -2*X[1]*X[2]^2, 2*X[0]^3 -6*X[0]*X[2]^2 -2*X[1]*X[2]^2 +3*X[2]^3, X[2]^4] -- Computes the Hilbert function of the Kaehler different of R/K[x_0]: ZD.HilbertKaehlerDiffRel(P,Ix); H(0) = 0 H(1) = 0 H(2) = 0 H(3) = 2 H(t) = 5, for t >= 4
The module of Kaehler differentials 1-forms of R/K is determined by a submodule U of P^3 which is computed by:
U := ZD.KaehlerDiffModule(P,Ix,1); indent(U); SubmoduleRows(F, matrix([ [X[1], X[0] -2*X[1], 0], [0, 2*X[1]*X[2] -X[2]^2, X[1]^2 -2*X[1]*X[2]], [4*X[0]*X[2] -3*X[2]^2, 0, 2*X[0]^2 -6*X[0]*X[2] +3*X[2]^2], [X[0]*X[1] -X[1]^2, 0, 0], [2*X[0]^2*X[2] -3*X[0]*X[2]^2 +X[2]^3, 0, 0], [0, X[0]*X[1] -X[1]^2, 0], [0, 2*X[0]^2*X[2] -3*X[0]*X[2]^2 +X[2]^3, 0], [0, 0, X[0]*X[1] -X[1]^2], [0, 0, X[1]^2*X[2] -X[1]*X[2]^2], [0, 0, 2*X[0]^2*X[2] -3*X[0]*X[2]^2 +X[2]^3] ]))
Next, let us consider the example, where X is given by a set of 10 points:
Use P::=QQ[X[0..2]]; Points := [[1,1,0], [1,3,0], [1,1,1], [1,2,1], [1,3,1], [1,0,2], [1,1,2], [1,2,2], [1,3,2], [1,3,3]];
We can compute the Dedekind different of X and its Hilbert function by:
ZD.DedekindDifferentRel(P,Points); [X[2]^6, X[1]*X[2]^5, X[0]*X[2]^5, X[1]^2*X[2]^4, X[0]*X[1]*X[2]^4, X[0]^2*X[2]^4, X[1]^3*X[2]^3, X[0]*X[1]^2*X[2]^3, X[1]^6, X[0]*X[1]^5] ZD.HilbertDedekindDiffRel(P,Points); H(0) = 0 H(1) = 0 H(2) = 0 H(3) = 0 H(4) = 0 H(5) = 0 H(t) = 10, for t >= 6
The module of Kaehler differential 3-forms of R/K can be computed by
ZD.KDMOfProjectivePoints(P,Points,3); submodule(FreeModule(RingWithID(144, "QQ[X[0],X[1],X[2]]"), 1), [[(-1/2)*X[0]*X[1]^2 +(-19/27)*X[1]^3 +(-85/18)*X[0]^2*X[2] +(563/27)*X[0]*X[1]*X[2] +(85/27)*X[1]^2*X[2] +(-61/3)*X[0]*X[2]^2 +(-301/18)*X[1]*X[2]^2 +(47/3)*X[2]^3], [-X[0]^2*X[2] +(3/2)*X[0]*X[2]^2 +(-1/2)*X[2]^3], [-2*X[0]^2*X[1] +4*X[0]*X[1]^2 +(-4/3)*X[1]^3 +X[1]^2*X[2] +(-23/6)*X[0]*X[2]^2 +(-4/3)*X[1]*X[2]^2 +(13/6)*X[2]^3], [-X[0]^3 +(13/3)*X[0]*X[1]^2 +(-16/9)*X[1]^3 +(11/6)*X[1]^2*X[2] +(-253/36)*X[0]*X[2]^2 +(-22/9)*X[1]*X[2]^2 +(143/36)*X[2]^3], [(40/9)*X[0]*X[1]^2 +(-52/27)*X[1]^3 +X[0]*X[1]*X[2] +(19/9)*X[1]^2*X[2] +(-563/54)*X[0]*X[2]^2 +(-85/27)*X[1]*X[2]^2 +(301/54)*X[2]^3], [2*X[0]*X[1]*X[2] -2*X[0]*X[2]^2 +(-3/2)*X[1]*X[2]^2 +(3/2)*X[2]^3], [3*X[0]^2*X[2] +(-11/3)*X[0]*X[2]^2 +X[2]^3], [2*X[0]*X[1]^2 +(-4/3)*X[1]^3 -2*X[0]*X[2]^2 +(23/6)*X[1]*X[2]^2 +(-5/2)*X[2]^3], [3*X[0]^2*X[1] +(-13/9)*X[1]^3 +(-11/3)*X[0]*X[2]^2 +(253/36)*X[1]*X[2]^2 +(-55/12)*X[2]^3], [4*X[0]^3 +(-40/27)*X[1]^3 +(-1/2)*X[1]^2*X[2] +(-85/18)*X[0]*X[2]^2 +(563/54)*X[1]*X[2]^2 +(-61/9)*X[2]^3] ])