Difference between revisions of "ApCoCoA-1:DA.DiffGB"
From ApCoCoAWiki
m (insert version info) |
m (replaced <quotes> tag by real quotes) |
||
Line 13: | Line 13: | ||
</itemize> | </itemize> | ||
<example>Use QQ[x[1..1,0..20]]; | <example>Use QQ[x[1..1,0..20]]; | ||
− | Use QQ[x[1..1,0..20]], Ord(DA.DiffTO( | + | Use QQ[x[1..1,0..20]], Ord(DA.DiffTO("Lex")); |
DA.DiffGB([x[1,1]^4+x[1,0]]); | DA.DiffGB([x[1,1]^4+x[1,0]]); | ||
------------------------------- | ------------------------------- |
Latest revision as of 13:29, 29 October 2020
This article is about a function from ApCoCoA-1. |
DA.DiffGB
Computes a differential Groebner basis.
Syntax
DA.DiffGB(I:IDEAL):LIST
Description
Returns a differential Groebner basis of the ideal I which is differentially generated by a set of differential polynomials wrt. the current differential term ordering. This function only terminates if the ideal I is zero dimensional and has a finite differential Groebner basis.
@param I A differential ideal.
@return If terminating, a list of differential polynomials that form a differential Groebner basis of I.
Example
Use QQ[x[1..1,0..20]]; Use QQ[x[1..1,0..20]], Ord(DA.DiffTO("Lex")); DA.DiffGB([x[1,1]^4+x[1,0]]); ------------------------------- [x[1,3] - 8x[1,1]x[1,2]^3, x[1,1]^2x[1,2]^2 + 1/4x[1,2], x[1,0]x[1,2] - 1/4x[1,1]^2, x[1,1]^4 + x[1,0]] -------------------------------