Difference between revisions of "ApCoCoA-1:NC.IsHomog"

From ApCoCoAWiki
m (fixed links to namespace ApCoCoA)
m (insert version info)
 
Line 1: Line 1:
 +
{{Version|1}}
 
<command>
 
<command>
 
<title>NC.IsHomog</title>
 
<title>NC.IsHomog</title>

Latest revision as of 10:14, 7 October 2020

This article is about a function from ApCoCoA-1.

NC.IsHomog

Check whether a polynomial or a LIST of polynomials is homogeneous in a non-commutative polynomial ring.

Syntax

NC.IsHomog(F:LIST):BOOL

Description

Please set non-commutative polynomial ring (via the command Use) before calling this function. For more information, please check the relevant commands and functions.

  • @param F: a non-commutative polynomial or a LIST of non-commutative polynomials. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial 0 is represented as the empty LIST [].

  • @return: a BOOL, which is True if F is homogeneous and False otherwise.

Example

USE QQ[x[1..2],y[1..2]];
F1:= [[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3]]; -- 2x[1]y[1]x[2]^2-9y[2]x[1]^2x[2]^3
F2:= [[2x[1],y[1],x[2]^2], [y[2],x[2]^3]]; -- 2x[1]y[1]x[2]^2+y[2]x[2]^3
F3:= [[2x[1],y[1],x[2]]]; -- 2x[1]y[1]x[2]
NC.IsHomog(F1);
NC.IsHomog(F2);
NC.IsHomog(F3);
NC.IsHomog([F1,F2,F3]);
NC.IsHomog([F2,F3]);

False
-------------------------------
True
-------------------------------
True
-------------------------------
False
-------------------------------
True
-------------------------------

See also

Use