Difference between revisions of "ApCoCoA-1:Num.EigenValues"
From ApCoCoAWiki
m (Bot: Category moved) |
m (replaced <quotes> tag by real quotes) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <command> | + | {{Version|1}} |
+ | <command> | ||
<title>Num.EigenValues</title> | <title>Num.EigenValues</title> | ||
<short_description>Computes the eigenvalues of a matrix.</short_description> | <short_description>Computes the eigenvalues of a matrix.</short_description> | ||
Line 24: | Line 25: | ||
------------------------------- | ------------------------------- | ||
Mat([ | Mat([ | ||
− | [ | + | ["28.970", "-13.677", "0.353", "0.353"], |
− | [ | + | ["0", "0", "3.051", "-3.051"] |
]) | ]) | ||
------------------------------- | ------------------------------- | ||
Line 32: | Line 33: | ||
</description> | </description> | ||
<seealso> | <seealso> | ||
− | <see>Introduction to CoCoAServer</see> | + | <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see> |
− | <see>Num.QR</see> | + | <see>ApCoCoA-1:Num.QR|Num.QR</see> |
− | <see>Num.SVD</see> | + | <see>ApCoCoA-1:Num.SVD|Num.SVD</see> |
− | <see>Num.EigenValuesAndVectors</see> | + | <see>ApCoCoA-1:Num.EigenValuesAndVectors|Num.EigenValuesAndVectors</see> |
− | <see>Num.EigenValuesAndAllVectors</see> | + | <see>ApCoCoA-1:Num.EigenValuesAndAllVectors|Num.EigenValuesAndAllVectors</see> |
</seealso> | </seealso> | ||
<types> | <types> |
Latest revision as of 13:47, 29 October 2020
This article is about a function from ApCoCoA-1. |
Num.EigenValues
Computes the eigenvalues of a matrix.
Syntax
Num.EigenValues(A:MAT):MAT
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This function computes the approximate complex eigenvalues of the matrix A.
@param A A quadratic matrix with rational entries.
@return The return value is a matrix with two rows. Each column of this matrix represents one approximate complex eigenvalue of A, i.e. the first entry of a column is the real part and the second entry of the same column is the imaginary part of one complex eigenvalue.
Example
Use P::=QQ[x,y,z]; A:=Mat([[1,2,7,18],[2,4,9,12],[23,8,9,10],[7,5,3,2]]); Dec(Num.EigenValues(A),3); -- CoCoAServer: computing Cpu Time = 0.015 ------------------------------- Mat([ ["28.970", "-13.677", "0.353", "0.353"], ["0", "0", "3.051", "-3.051"] ]) -------------------------------
See also