Difference between revisions of "ApCoCoA-1:LinBox.CharPoly"
From ApCoCoAWiki
m (Bot: Category moved) |
m (insert version info) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>LinBox.CharPoly</title> | <title>LinBox.CharPoly</title> | ||
Line 39: | Line 40: | ||
</description> | </description> | ||
− | <see>Introduction to CoCoAServer</see> | + | <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see> |
− | <see>LinAlg.CharPoly</see> | + | <see>ApCoCoA-1:LinAlg.CharPoly|LinAlg.CharPoly</see> |
− | <see>CharPoly</see> | + | <see>ApCoCoA-1:CharPoly|CharPoly</see> |
<types> | <types> | ||
<type>matrix</type> | <type>matrix</type> |
Latest revision as of 10:11, 7 October 2020
This article is about a function from ApCoCoA-1. |
LinBox.CharPoly
Computes the characteristic polynomial of a matrix.
Syntax
LinBox.CharPoly(M:MAT, X:POLY):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This function returns the characteristic polynomial of M in the indeterminate X computed by the ApCoCoAServer using functions of the LinBox library.
@param M A matrix with arbitrary entries over the current ring, but whose components do not contain the indeterminate X.
@param X An indeterminate.
@return The characteristic polynomial of M in the indeterminate X.
Example
Use R ::= ZZ/(19)[x]; LinBox.CharPoly(BringIn(Mat([[1,2,3],[4,5,6],[7,8,9]])), x); -- CoCoAServer: computing Cpu Time = 0 ------------------------------- x^3 + 4x^2 + x -------------------------------
Example
Use R ::= ZZ[x]; LinBox.CharPoly(Mat([[1,2,3],[4,5,6],[7,8,9]]), x); -- WARNING: Coeffs are not in a field -- GBasis-related computations could fail to terminate or be wrong ------------------------------- -- WARNING: Coeffs are not in a field -- GBasis-related computations could fail to terminate or be wrong -- CoCoAServer: computing Cpu Time = 0 ------------------------------- x^3 - 15x^2 - 18x -------------------------------