Difference between revisions of "ApCoCoA-1:BBF.RetrieveVPolysWithTermInSupport"
From ApCoCoAWiki
m (Bot: fixed typo) |
m (insert version info) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>BBF.RetrieveVPolysWithTermInSupport</title> | <title>BBF.RetrieveVPolysWithTermInSupport</title> | ||
Line 32: | Line 33: | ||
<type>borderbasis</type> | <type>borderbasis</type> | ||
</types> | </types> | ||
− | <see>BBF.Explanation of BBF variables and structures</see> | + | <see>ApCoCoA-1:BBF.Explanation of BBF variables and structures|BBF.Explanation of BBF variables and structures</see> |
− | <see>BBF.RetrieveV</see> | + | <see>ApCoCoA-1:BBF.RetrieveV|BBF.RetrieveV</see> |
− | <see>BBF.RetrieveVLTs</see> | + | <see>ApCoCoA-1:BBF.RetrieveVLTs|BBF.RetrieveVLTs</see> |
<key>RetrieveVPolysWithTermInSupport</key> | <key>RetrieveVPolysWithTermInSupport</key> | ||
<key>BBF.RetrieveVPolysWithTermInSupport</key> | <key>BBF.RetrieveVPolysWithTermInSupport</key> | ||
<wiki-category>ApCoCoA-1:Package_bbf</wiki-category> | <wiki-category>ApCoCoA-1:Package_bbf</wiki-category> | ||
</command> | </command> |
Latest revision as of 09:48, 7 October 2020
This article is about a function from ApCoCoA-1. |
BBF.RetrieveVPolysWithTermInSupport
Retrieves polynomials with specific support term from V.
Syntax
BBF.RetrieveVPolysWithTermInSupport(T:POLY):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoABBFServer. You will have to start the ApCoCoABBFServer in order to use it/them.
This command retrieves all polynomials from V that have the term T in their support.
@param T All polynomials in V with this term in their support will be retrieved.
@return List of polynomials of set V.
Example
Use ZZ/(32003)[x, y, z],DegLex; I:=Ideal(-4*x^2 + 1, -4*y^2 - 1, 5*z^2); BBF.Init(I); BBF.Steps(20); -- After computation has finished: BBF.RetrieveVPolysWithTermInSupport(z); Output: [x^2z - 8001z, y^2z + 8001z]
BBF.Explanation of BBF variables and structures