Difference between revisions of "ApCoCoA-1:Torus Knot Group"

From ApCoCoAWiki
(New page: === <div id="Torus Knot Group">Torus Knot Group</div> === ==== Description ==== And has the following presentation: ==== Reference ==== Micha...)
 
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
=== <div id="Torus Knot Group">[[:ApCoCoA:Symbolic data#Torus Knot Group|Torus Knot Group]]</div> ===
 
=== <div id="Torus Knot Group">[[:ApCoCoA:Symbolic data#Torus Knot Group|Torus Knot Group]]</div> ===
 
==== Description ====
 
==== Description ====
  And has the following presentation:
+
The Torus Knot Group is described by a space curve r(phi).
 
+
                (cos(q*phi)+2)*cos(p*phi)
 +
  With r(phi) = ( (cos(q*phi)+2)*sin(p*phi) ) 0<=phi<=2pi
 +
                        sin(q*phi)
 +
By interlacing a string through the hole of a torus p times with q revolutions, a (p,q)-torus knot results. The ends of the string are joined together. The variables p,q are relatively prime. And has the following presentation:
 +
tng(a,b)= < a,b| a^p = b^q = 1 >
  
 
==== Reference ====
 
==== Reference ====
 
Michael Eisermann, Knotengruppen-Darstellungen und
 
Michael Eisermann, Knotengruppen-Darstellungen und
Invarianten von endlichem Typ, Rheinischen Friedrich-Wilhelms-Universität, Bonn, 2000
+
Invarianten von endlichem Typ, Rheinischen Friedrich-Wilhelms-Universität, Bonn, 2000; Johannes Diernke, Universität Oldenburg, Oldenburg, 2010/2011: [http://www.informatik.uni-oldenburg.de/~trigger/content/opengl/opengl_course/slides/2010-JOGL-08-Torus-Knoten.pdf]; [http://mathworld.wolfram.com/TorusKnot.html]
  
 
==== Computation ====
 
==== Computation ====
Line 13: Line 17:
 
   
 
   
 
  // Define the variable q,p of the Torusknotengroup
 
  // Define the variable q,p of the Torusknotengroup
 +
//ggT(q,p)=1
 
  MEMORY.P := 2;
 
  MEMORY.P := 2;
 
  MEMORY.Q := 3;
 
  MEMORY.Q := 3;
+
 
 
  Use ZZ/(2)[a,b,c,d];
 
  Use ZZ/(2)[a,b,c,d];
 
  NC.SetOrdering("LLEX");
 
  NC.SetOrdering("LLEX");
Line 38: Line 43:
 
  Gb:=NC.GB(Relations,31,1,100,1000);
 
  Gb:=NC.GB(Relations,31,1,100,1000);
 
  Gb;
 
  Gb;
 +
 
====Examples in Symbolic Data Format====
 
====Examples in Symbolic Data Format====
 
   <FREEALGEBRA createdAt="2014-07-03" createdBy="strohmeier">
 
   <FREEALGEBRA createdAt="2014-07-03" createdBy="strohmeier">
Line 52: Line 58:
 
   <Comment>The partial LLex Gb has 198 elements</Comment>
 
   <Comment>The partial LLex Gb has 198 elements</Comment>
 
   <Comment>Torusknotengruppe_p2q3</Comment>
 
   <Comment>Torusknotengruppe_p2q3</Comment>
   <Comment>Torusknotengruppe_p2q3 is isomorph to "Kleeblattgruppe"</Comment>
+
   <Comment>Torusknotengruppe_p2q3 is isomorph to "Trefoil Knot Group"</Comment>
 
   </FREEALGEBRA>
 
   </FREEALGEBRA>

Latest revision as of 08:27, 20 July 2014

Description

The Torus Knot Group is described by a space curve r(phi).

                (cos(q*phi)+2)*cos(p*phi) 
With r(phi) = ( (cos(q*phi)+2)*sin(p*phi) ) 0<=phi<=2pi
                        sin(q*phi)

By interlacing a string through the hole of a torus p times with q revolutions, a (p,q)-torus knot results. The ends of the string are joined together. The variables p,q are relatively prime. And has the following presentation:

tng(a,b)= < a,b| a^p = b^q = 1 >

Reference

Michael Eisermann, Knotengruppen-Darstellungen und Invarianten von endlichem Typ, Rheinischen Friedrich-Wilhelms-Universität, Bonn, 2000; Johannes Diernke, Universität Oldenburg, Oldenburg, 2010/2011: [1]; [2]

Computation

/*Use the ApCoCoA package ncpoly.*/

// Define the variable q,p of the Torusknotengroup
//ggT(q,p)=1
MEMORY.P := 2;
MEMORY.Q := 3;
 
Use ZZ/(2)[a,b,c,d];
NC.SetOrdering("LLEX");

Define CreateRelationsTorusknoten()
  Relations:=[];
  
  //add the inverse relations
  Append(Relations,[[a,c],[1]]);
  Append(Relations,[[c,a],[1]]);
  Append(Relations,[[b,d],[1]]);
  Append(Relations,[[d,b],[1]]);
  
  // add the relation a^p = b^q 
  Append(Relations,[[a^MEMORY.P],[b^MEMORY.Q]]);
   Return Relations;
EndDefine;

Relations:=CreateRelationsTorusknoten();
Relations;

Gb:=NC.GB(Relations,31,1,100,1000);
Gb;

Examples in Symbolic Data Format

 <FREEALGEBRA createdAt="2014-07-03" createdBy="strohmeier">
 	<vars>a,b,c,d</vars>
 	<uptoDeg>14</uptoDeg>
 	<basis>
 	<ncpoly>a*c-1</ncpoly>
 	<ncpoly>c*a-1</ncpoly>
 	<ncpoly>b*d-1</ncpoly>
 	<ncpoly>d*b-1</ncpoly>
 	<Comment>Relation: a^p=b^q</Comment>
 	<ncpoly>a*a-b*b*b</ncpoly> 
 	</basis>
 	<Comment>The partial LLex Gb has 198 elements</Comment>
 	<Comment>Torusknotengruppe_p2q3</Comment>
 	<Comment>Torusknotengruppe_p2q3 is isomorph to "Trefoil Knot Group"</Comment>
 </FREEALGEBRA>