Difference between revisions of "ApCoCoA-1:Mathieu22 group"
From ApCoCoAWiki
StrohmeierB (talk | contribs) |
StrohmeierB (talk | contribs) |
||
Line 1: | Line 1: | ||
− | === <div id="Mathieu22_group">[[:ApCoCoA:Symbolic data#Mathieu22_group|Mathieu | + | === <div id="Mathieu22_group">[[:ApCoCoA:Symbolic data#Mathieu22_group|Mathieu Group M {22}]]</div> === |
==== Description ==== | ==== Description ==== | ||
The Mathieu group M22 is a sporadic group with order 443520 and it is a subgroup of the monstergroup. | The Mathieu group M22 is a sporadic group with order 443520 and it is a subgroup of the monstergroup. |
Latest revision as of 21:00, 22 April 2014
Description
The Mathieu group M22 is a sporadic group with order 443520 and it is a subgroup of the monstergroup.
Reference
ATLAS of Finite Group Representations - Version 3
Computation
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a,b,c]; NC.SetOrdering("LLEX"); Define CreateRelationsMathieuM22() Relations:=[]; // add the relation a^2 = 1 Append(Relations,[[a,a],[1]]); // add the relation b^4 = 1 Append(Relations,[[b,b,b,b],[1]]); //add the relation (ab)^11 = 1 Append(Relations, [[a,b,a,b,a,b,a,b,a,b,a,b,a,b,a,b,a,b,a,b,a,b],[1]]); //add the relation (ab^2)^5 = 1 Append(Relations,[[a,b,b,a,b,b,a,b,b,a,b,b,a,b,b],[1]]); //add the relation [a,bab]^3=1 // the commutator of [a,bab] is a,b,a,b,b^3,a,b^3 Append(Relations,[[a,b,a,b,b,b,b,a,b,b,b,a,b,a,b,b,b,b,a,b,b,b,a,b,a,b,b,b,b,a,b,b,b],[1]]); //add the relation (ababab^-1)^5 = 1 //Append(Relations,[[a,b,a,b,a,b,b,b,a,b,a,b,a,b,b,b,a,b,a,b,a,b,b,b,a,b,a,b,a,b,b,b,a,b,a,b,a,b,b,b],[1]]); Append(Relations,[[a,b,a,b,a,b,b,b],[c]]); Append(Relations,[[c,c,c,c,c],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsMathieuM22(); Relations; Gb:=NC.GB(Relations,31,1,100,1000); Gb;
Example in Symbolic Data Format
<FREEALGEBRA createdAt="2014-03-26" createdBy="strohmeier"> <vars>a,b</vars> <uptoDeg>12</uptoDeg> <basis> <ncpoly>a*a-1</ncpoly> <ncpoly>b*b*b*b-1</ncpoly> <ncpoly>((a*b)^11)-1</ncpoly> <Comment>relation: (ab)^11=1 </Comment> <ncpoly>(a*b*b)^5-1</ncpoly> <Comment>relation: (abb)^5=1</Comment> <ncpoly>(a*b*a*b*b*b*b*a*b*b*b)^3-1</ncpoly> <Comment>commutator: [a,bab]=ababb^3ab^3</Comment> <Comment>relation [a,bab]^3=1</Comment> <ncpoly>(a*b*a*b*a*b*b*b)^5-1</ncpoly> <Comment>relation (ababab^-1)^5=1</Comment> </basis> <Comment>The partial LLex Gb has 186 elements</Comment> <Comment>Mathieu group_M_{22}</Comment> </FREEALGEBRA>