Difference between revisions of "ApCoCoA-1:Other4 groups"
From ApCoCoAWiki
(New page: === <div id="Other4_groups">Other groups</div> === ==== Description ==== This group has the following representation: G = <a,b | a^2 = b^3 = (abab...) |
StrohmeierB (talk | contribs) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | === <div id="Other4_groups">[[:ApCoCoA:Symbolic data#Other_groups|Other | + | === <div id="Other4_groups">[[:ApCoCoA:Symbolic data#Other_groups|Other Groups]]</div> === |
==== Description ==== | ==== Description ==== | ||
This group has the following representation: | This group has the following representation: | ||
Line 12: | Line 12: | ||
Use ZZ/(2)[a,b]; | Use ZZ/(2)[a,b]; | ||
NC.SetOrdering("LLEX"); | NC.SetOrdering("LLEX"); | ||
+ | |||
Define CreateRelationsOther4() | Define CreateRelationsOther4() | ||
Relations:=[]; | Relations:=[]; | ||
// add the relations a^2 = b^3 = 1 | // add the relations a^2 = b^3 = 1 | ||
− | Append(Relations,[[a | + | Append(Relations,[[a^2],[1]]); |
− | Append(Relations,[[b | + | Append(Relations,[[b^3],[1]]); |
+ | |||
// add the relation (ababab^{2})^{3} = 1 | // add the relation (ababab^{2})^{3} = 1 | ||
− | Append(Relations,[[a,b,a,b,a,b | + | Append(Relations,[[a,b,a,b,a,b^2,a,b,a,b,a,b^2,a,b,a,b,a,b^2],[1]]); |
− | + | ||
+ | Return Relations; | ||
EndDefine; | EndDefine; | ||
Relations:=CreateRelationsOther4(); | Relations:=CreateRelationsOther4(); | ||
− | + | Gb:=NC.GB(Relations); | |
− | Size( | + | Size(Gb); |
+ | ====Example in Symbolic Data Format==== | ||
+ | <FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier"> | ||
+ | <vars>a,b</vars> | ||
+ | <basis> | ||
+ | <ncpoly>a*a-1</ncpoly> | ||
+ | <ncpoly>b*b*b-1</ncpoly> | ||
+ | <ncpoly>(a*b*a*b*a*b*b)^3-1</ncpoly> | ||
+ | <Comment>relation:(ababab^{2})^{3} = 1 </Comment> | ||
+ | </basis> | ||
+ | <Comment>Other_groups4</Comment> | ||
+ | </FREEALGEBRA> |
Latest revision as of 21:08, 22 April 2014
Description
This group has the following representation:
G = <a,b | a^2 = b^3 = (ababab^{2})^{3} = 1>
The number of elements of the Groebner-Basis is 111554.
Reference
No reference available
Computation
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a,b]; NC.SetOrdering("LLEX"); Define CreateRelationsOther4() Relations:=[]; // add the relations a^2 = b^3 = 1 Append(Relations,[[a^2],[1]]); Append(Relations,[[b^3],[1]]); // add the relation (ababab^{2})^{3} = 1 Append(Relations,[[a,b,a,b,a,b^2,a,b,a,b,a,b^2,a,b,a,b,a,b^2],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsOther4(); Gb:=NC.GB(Relations); Size(Gb);
Example in Symbolic Data Format
<FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier"> <vars>a,b</vars> <basis> <ncpoly>a*a-1</ncpoly> <ncpoly>b*b*b-1</ncpoly> <ncpoly>(a*b*a*b*a*b*b)^3-1</ncpoly> <Comment>relation:(ababab^{2})^{3} = 1 </Comment> </basis> <Comment>Other_groups4</Comment> </FREEALGEBRA>