Difference between revisions of "ApCoCoA-1:VonDyck groups"
From ApCoCoAWiki
(New page: === <div id="VonDyck groups">Von Dyck groups</div> === ==== Description ==== D(l,m,n) = <x,y | x^{l} = y^{m} = (xy)^{n} = 1> (Reference: not f...) |
StrohmeierB (talk | contribs) |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | === <div id="VonDyck groups">[[:ApCoCoA:Symbolic data#VonDyck_groups|Von Dyck | + | === <div id="VonDyck groups">[[:ApCoCoA:Symbolic data#VonDyck_groups|Von Dyck Groups]]</div> === |
==== Description ==== | ==== Description ==== | ||
− | + | The von Dyck groups are sometimes referred to as ordinary triangle groups and are subgroups of index 2 in Triangle(l, m, n) generated by words of even length in the generators a, b, c. A specific representation is given for x = ab, y = ca, yx = cb: | |
D(l,m,n) = <x,y | x^{l} = y^{m} = (xy)^{n} = 1> | D(l,m,n) = <x,y | x^{l} = y^{m} = (xy)^{n} = 1> | ||
Line 10: | Line 10: | ||
/*Use the ApCoCoA package ncpoly.*/ | /*Use the ApCoCoA package ncpoly.*/ | ||
− | // | + | // Parameters of von Dyck group |
− | MEMORY.N:= | + | MEMORY.L:=3; |
+ | MEMORY.M:=5; | ||
+ | MEMORY.N:=2; | ||
+ | Use ZZ/(2)[x,y]; | ||
+ | NC.SetOrdering("LLEX"); | ||
− | + | Define CreateRelationsVonDyck() | |
− | |||
− | Define | ||
Relations:=[]; | Relations:=[]; | ||
− | |||
− | |||
− | |||
− | // add the relation | + | // add the relation x^l = 1 |
− | Append(Relations, [[ | + | Append(Relations,[[x^MEMORY.L],[1]]); |
+ | |||
+ | // add the relation y^m = 1 | ||
+ | Append(Relations,[[y^MEMORY.M],[1]]); | ||
+ | |||
+ | // add the relation (xy)^n = 1 | ||
+ | BufferXY:=[]; | ||
+ | For Index1 := 1 To MEMORY.N Do | ||
+ | Append(BufferXY,x); | ||
+ | Append(BufferXY,y); | ||
+ | EndFor; | ||
+ | Append(Relations,[BufferXY,[1]]); | ||
− | |||
− | |||
Return Relations; | Return Relations; | ||
EndDefine; | EndDefine; | ||
− | Relations:= | + | Relations:=CreateRelationsVonDyck(); |
Relations; | Relations; | ||
− | + | ||
− | + | Gb:=NC.GB(Relations); | |
+ | Gb; | ||
+ | ====Example in Symbolic Data Format==== | ||
+ | <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier"> | ||
+ | <vars>x,y</vars> | ||
+ | <basis> | ||
+ | <ncpoly>x^3-1</ncpoly> | ||
+ | <ncpoly>y^5-1</ncpoly> | ||
+ | <ncpoly>(x*y)^2-1</ncpoly> | ||
+ | </basis> | ||
+ | <Comment>Von_Dyck_group_l3m5n2</Comment> | ||
+ | </FREEALGEBRA> |
Latest revision as of 20:45, 22 April 2014
Description
The von Dyck groups are sometimes referred to as ordinary triangle groups and are subgroups of index 2 in Triangle(l, m, n) generated by words of even length in the generators a, b, c. A specific representation is given for x = ab, y = ca, yx = cb:
D(l,m,n) = <x,y | x^{l} = y^{m} = (xy)^{n} = 1>
(Reference: not found yet)
Computation
/*Use the ApCoCoA package ncpoly.*/ // Parameters of von Dyck group MEMORY.L:=3; MEMORY.M:=5; MEMORY.N:=2; Use ZZ/(2)[x,y]; NC.SetOrdering("LLEX"); Define CreateRelationsVonDyck() Relations:=[]; // add the relation x^l = 1 Append(Relations,[[x^MEMORY.L],[1]]); // add the relation y^m = 1 Append(Relations,[[y^MEMORY.M],[1]]); // add the relation (xy)^n = 1 BufferXY:=[]; For Index1 := 1 To MEMORY.N Do Append(BufferXY,x); Append(BufferXY,y); EndFor; Append(Relations,[BufferXY,[1]]); Return Relations; EndDefine; Relations:=CreateRelationsVonDyck(); Relations; Gb:=NC.GB(Relations); Gb;
Example in Symbolic Data Format
<FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier"> <vars>x,y</vars> <basis> <ncpoly>x^3-1</ncpoly> <ncpoly>y^5-1</ncpoly> <ncpoly>(x*y)^2-1</ncpoly> </basis> <Comment>Von_Dyck_group_l3m5n2</Comment> </FREEALGEBRA>