Difference between revisions of "ApCoCoA-1:NCo.TruncatedGB"
m (replaced <quotes> tag by real quotes) |
|||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
<title>NCo.TruncatedGB</title> | <title>NCo.TruncatedGB</title> | ||
<short_description> | <short_description> | ||
Compute a truncated Groebner basis of a finitely generated homogeneous two-sided ideal in a free monoid ring. | Compute a truncated Groebner basis of a finitely generated homogeneous two-sided ideal in a free monoid ring. | ||
− | |||
− | |||
</short_description> | </short_description> | ||
<syntax> | <syntax> | ||
− | NCo.TruncatedGB(G:LIST, DB:INT | + | NCo.TruncatedGB(G:LIST, DB:INT):LIST |
</syntax> | </syntax> | ||
<description> | <description> | ||
+ | Given a word ordering and a homogeneous two-sided ideal <tt>I</tt>, a set of non-zero polynomials <tt>G</tt> is called a Groebner basis of <tt>I</tt> if the leading word set <tt>LW{G}</tt> generates the leading word ideal <tt>LW(I)</tt>. Note that it may not exist finite Groebner basis of the ideal <tt>I</tt>. Moreover, let <tt>D</tt> be a positive integer. Then the set <tt>{g in G | Deg(g)<=D}</tt> is a Groebner basis of the ideal <tt><f in I | Deg(f)<=D></tt> and is called a <em>D-truncated</em> Groebner basis of <tt>I</tt>. | ||
+ | <par/> | ||
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | <em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | ||
<par/> | <par/> | ||
− | Please set ring environment <em>coefficient field</em> <tt> K</tt>, <em>alphabet</em> (or set of indeterminates) <tt>X</tt> and <em>ordering</em> via the functions <ref>NCo.SetFp</ref>, <ref>NCo.SetX</ref> and <ref>NCo.SetOrdering</ref>, respectively, before using this function. The default coefficient field is <tt>Q</tt>, and the default ordering is the length-lexicographic ordering ( | + | Please set ring environment <em>coefficient field</em> <tt> K</tt>, <em>alphabet</em> (or set of indeterminates) <tt>X</tt> and <em>ordering</em> via the functions <ref>ApCoCoA-1:NCo.SetFp|NCo.SetFp</ref>, <ref>ApCoCoA-1:NCo.SetX|NCo.SetX</ref> and <ref>ApCoCoA-1:NCo.SetOrdering|NCo.SetOrdering</ref>, respectively, before using this function. The default coefficient field is <tt>Q</tt>, and the default ordering is the length-lexicographic ordering ("LLEX"). For more information, please check the relevant functions. |
<itemize> | <itemize> | ||
− | <item>@param <em>G</em>: a LIST of non-zero homogeneous polynomials generating a two-sided ideal in <tt>K<X></tt>. Each polynomial is represented as a LIST of monomials, which are LISTs of the form [C, W] where W is a word in <tt><X></tt> and C is the coefficient of W. For example, the polynomial <tt>f=xy-y+1</tt> is represented as F:=[[1, | + | <item>@param <em>G</em>: a LIST of non-zero homogeneous polynomials generating a two-sided ideal in <tt>K<X></tt>. Each polynomial is represented as a LIST of monomials, which are LISTs of the form [C, W] where W is a word in <tt><X></tt> and C is the coefficient of W. For example, the polynomial <tt>f=xy-y+1</tt> is represented as F:=[[1,"xy"], [-1, "y"], [1,""]].</item> |
<item>@param <em>DB</em>: a positive INT, which gives a degree bound of S-polynomials (or obstructions) during the Buchberger enumerating procedure. The procedure will discard S-polynomials (or obstructions) whose degrees are larger than DB.</item> | <item>@param <em>DB</em>: a positive INT, which gives a degree bound of S-polynomials (or obstructions) during the Buchberger enumerating procedure. The procedure will discard S-polynomials (or obstructions) whose degrees are larger than DB.</item> | ||
<item>@return: a LIST of polynomials, which is a truncated Groebner basis at degree DB with respect to the current word ordering if the enumerating procedure doesn't terminate due to reaching the loop bound LB, and is a partial Groebner basis otherwise.</item> | <item>@return: a LIST of polynomials, which is a truncated Groebner basis at degree DB with respect to the current word ordering if the enumerating procedure doesn't terminate due to reaching the loop bound LB, and is a partial Groebner basis otherwise.</item> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</itemize> | </itemize> | ||
<example> | <example> | ||
− | NCo.SetX( | + | NCo.SetX("xyz"); |
− | F1:=[[1, | + | F1:=[[1,"yxy"],[-1,"zyz"]]; |
− | F2:=[[1, | + | F2:=[[1,"xyx"],[-1,"zxy"]]; |
− | F3:=[[1, | + | F3:=[[1,"zxz"],[-1,"yzx"]]; |
− | F4:=[[1, | + | F4:=[[1,"xxx"],[1,"yyy"],[1,"zzz"],[1,"xyz"]]; |
G:=[F1,F2,F3,F4]; | G:=[F1,F2,F3,F4]; | ||
NCo.TruncatedGB(G,6); | NCo.TruncatedGB(G,6); | ||
− | [[[1, | + | [[[1, "yzx"], [-1, "zxz"]], [[1, "yxy"], [-1, "zyz"]], [[1, "xyx"], [-1, "zxy"]], [[1, "xxx"], [1, "xyz"], [1, "yyy"], [1, "zzz"]], |
− | [[1, | + | [[1, "zxzy"], [-1, "zzxz"]], [[1, "xzyz"], [-1, "zxyy"]], [[1, "xxyz"], [1, "xyyy"], [-1, "xzxz"], [1, "xzzz"], [-1, "yyyx"], |
− | [-1, | + | [-1, "zzzx"]], [[1, "zzxyy"], [-1, "zzxzz"]], [[1, "yzzxz"], [-1, "zxzzy"]], [[1, "yzzxy"], [-1, "zzxzx"]], [[1, "yzyyy"], |
− | [1, | + | [1, "yzzzz"], [1, "zxzxx"], [1, "zzxzz"]], [[1, "yxzxz"], [-1, "zyzzx"]], [[1, "xzzxz"], [-1, "zxyyx"]], [[1, "xyyyy"], [1, "xyzzz"], |
− | [1, | + | [1, "zxyyz"], [1, "zzzxy"]], [[1, "xxzxz"], [1, "xyyyx"], [-1, "xzxzx"], [1, "xzzzx"], [-1, "yyyxx"], [-1, "zzzxx"]], [[1, "xxzxy"], |
− | [1, | + | [1, "xyzyx"], [1, "yyyyx"], [1, "zzzyx"]], [[1, "xxyyy"], [1, "xxzzz"], [-1, "xyzyz"], [-1, "xzxzx"], [-1, "yyyxx"], [-1, "yyyyz"], |
− | [-1, | + | [-1, "zzzxx"], [-1, "zzzyz"]], [[1, "zxzzyz"], [-1, "zzxzxy"]], [[1, "yzzzxz"], [-1, "zxzzyy"]], [[1, "yzzzxy"], [-1, "zzxzxx"]], |
− | [[1, | + | [[1, "xzzzxz"], [-1, "zxyzyz"]], [[1, "xyyzyz"], [1, "xzxyyx"], [-1, "xzxzxy"], [1, "xzzzxy"], [-1, "yyyxxy"], [-1, "zzzxxy"]], |
− | [[1, | + | [[1, "xxzzzy"], [1, "xyyyzz"], [-1, "xyzyzy"], [-1, "xzxyyz"], [-1, "xzxzxy"], [-1, "xzxzzz"], [-1, "xzzzxy"], [1, "xzzzzz"], |
− | [-1, | + | [-1, "yyyxxy"], [-1, "yyyxzz"], [-1, "yyyyzy"], [-1, "zzzxxy"], [-1, "zzzxzz"], [-1, "zzzyzy"]], [[1, "xxzzxy"], [1, "xyzyxx"], |
− | [1, | + | [1, "yyyyxx"], [1, "zzzyxx"]]] |
------------------------------- | ------------------------------- | ||
</example> | </example> | ||
</description> | </description> | ||
<seealso> | <seealso> | ||
− | <see>NCo.GB</see> | + | <see>ApCoCoA-1:NCo.GB|NCo.GB</see> |
− | <see>NCo.IsGB</see> | + | <see>ApCoCoA-1:NCo.IsGB|NCo.IsGB</see> |
− | <see>NCo.LW</see> | + | <see>ApCoCoA-1:NCo.LW|NCo.LW</see> |
− | <see>NCo.ReducedGB</see> | + | <see>ApCoCoA-1:NCo.ReducedGB|NCo.ReducedGB</see> |
− | <see>NCo.SetFp</see> | + | <see>ApCoCoA-1:NCo.SetFp|NCo.SetFp</see> |
− | <see>NCo.SetOrdering</see> | + | <see>ApCoCoA-1:NCo.SetOrdering|NCo.SetOrdering</see> |
− | <see>NCo.SetX</see> | + | <see>ApCoCoA-1:NCo.SetX|NCo.SetX</see> |
− | <see>Introduction to CoCoAServer</see> | + | <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see> |
</seealso> | </seealso> | ||
<types> | <types> | ||
Line 67: | Line 62: | ||
<key>NCo.TruncatedGB</key> | <key>NCo.TruncatedGB</key> | ||
<key>TruncatedGB</key> | <key>TruncatedGB</key> | ||
− | <wiki-category>Package_gbmr</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_gbmr</wiki-category> |
</command> | </command> |
Latest revision as of 13:45, 29 October 2020
This article is about a function from ApCoCoA-1. |
NCo.TruncatedGB
Compute a truncated Groebner basis of a finitely generated homogeneous two-sided ideal in a free monoid ring.
Syntax
NCo.TruncatedGB(G:LIST, DB:INT):LIST
Description
Given a word ordering and a homogeneous two-sided ideal I, a set of non-zero polynomials G is called a Groebner basis of I if the leading word set LW{G} generates the leading word ideal LW(I). Note that it may not exist finite Groebner basis of the ideal I. Moreover, let D be a positive integer. Then the set {g in G | Deg(g)<=D} is a Groebner basis of the ideal <f in I | Deg(f)<=D> and is called a D-truncated Groebner basis of I.
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
Please set ring environment coefficient field K, alphabet (or set of indeterminates) X and ordering via the functions NCo.SetFp, NCo.SetX and NCo.SetOrdering, respectively, before using this function. The default coefficient field is Q, and the default ordering is the length-lexicographic ordering ("LLEX"). For more information, please check the relevant functions.
@param G: a LIST of non-zero homogeneous polynomials generating a two-sided ideal in K<X>. Each polynomial is represented as a LIST of monomials, which are LISTs of the form [C, W] where W is a word in <X> and C is the coefficient of W. For example, the polynomial f=xy-y+1 is represented as F:=[[1,"xy"], [-1, "y"], [1,""]].
@param DB: a positive INT, which gives a degree bound of S-polynomials (or obstructions) during the Buchberger enumerating procedure. The procedure will discard S-polynomials (or obstructions) whose degrees are larger than DB.
@return: a LIST of polynomials, which is a truncated Groebner basis at degree DB with respect to the current word ordering if the enumerating procedure doesn't terminate due to reaching the loop bound LB, and is a partial Groebner basis otherwise.
Example
NCo.SetX("xyz"); F1:=[[1,"yxy"],[-1,"zyz"]]; F2:=[[1,"xyx"],[-1,"zxy"]]; F3:=[[1,"zxz"],[-1,"yzx"]]; F4:=[[1,"xxx"],[1,"yyy"],[1,"zzz"],[1,"xyz"]]; G:=[F1,F2,F3,F4]; NCo.TruncatedGB(G,6); [[[1, "yzx"], [-1, "zxz"]], [[1, "yxy"], [-1, "zyz"]], [[1, "xyx"], [-1, "zxy"]], [[1, "xxx"], [1, "xyz"], [1, "yyy"], [1, "zzz"]], [[1, "zxzy"], [-1, "zzxz"]], [[1, "xzyz"], [-1, "zxyy"]], [[1, "xxyz"], [1, "xyyy"], [-1, "xzxz"], [1, "xzzz"], [-1, "yyyx"], [-1, "zzzx"]], [[1, "zzxyy"], [-1, "zzxzz"]], [[1, "yzzxz"], [-1, "zxzzy"]], [[1, "yzzxy"], [-1, "zzxzx"]], [[1, "yzyyy"], [1, "yzzzz"], [1, "zxzxx"], [1, "zzxzz"]], [[1, "yxzxz"], [-1, "zyzzx"]], [[1, "xzzxz"], [-1, "zxyyx"]], [[1, "xyyyy"], [1, "xyzzz"], [1, "zxyyz"], [1, "zzzxy"]], [[1, "xxzxz"], [1, "xyyyx"], [-1, "xzxzx"], [1, "xzzzx"], [-1, "yyyxx"], [-1, "zzzxx"]], [[1, "xxzxy"], [1, "xyzyx"], [1, "yyyyx"], [1, "zzzyx"]], [[1, "xxyyy"], [1, "xxzzz"], [-1, "xyzyz"], [-1, "xzxzx"], [-1, "yyyxx"], [-1, "yyyyz"], [-1, "zzzxx"], [-1, "zzzyz"]], [[1, "zxzzyz"], [-1, "zzxzxy"]], [[1, "yzzzxz"], [-1, "zxzzyy"]], [[1, "yzzzxy"], [-1, "zzxzxx"]], [[1, "xzzzxz"], [-1, "zxyzyz"]], [[1, "xyyzyz"], [1, "xzxyyx"], [-1, "xzxzxy"], [1, "xzzzxy"], [-1, "yyyxxy"], [-1, "zzzxxy"]], [[1, "xxzzzy"], [1, "xyyyzz"], [-1, "xyzyzy"], [-1, "xzxyyz"], [-1, "xzxzxy"], [-1, "xzxzzz"], [-1, "xzzzxy"], [1, "xzzzzz"], [-1, "yyyxxy"], [-1, "yyyxzz"], [-1, "yyyyzy"], [-1, "zzzxxy"], [-1, "zzzxzz"], [-1, "zzzyzy"]], [[1, "xxzzxy"], [1, "xyzyxx"], [1, "yyyyxx"], [1, "zzzyxx"]]] -------------------------------
See also