Difference between revisions of "ApCoCoA-1:BBSGen.JacobiStep"

From ApCoCoAWiki
m (insert version info)
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
{{Version|1}}
 
<command>
 
<command>
 
   <title>BBSGen.JacobiStep</title>
 
   <title>BBSGen.JacobiStep</title>
   <short_description>Let R:=K[x_1,...,x_N] and let OO be an order ideal. This function computes the entry in the position (I,J) of the Jacobi identity matrix J^klm  [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ]=0  where m,k,l is from {1...N} and I,J in {1,...,Len(OO)}.
+
   <short_description>Let R:=K[x_1,...,x_N] and let OO be an order ideal. This function computes the entry in the position (I,J) of the Jacobi identity matrix J^klm  [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] where m,k,l is from {1,...,N} and I,J in {1,...,Len(OO)}.
 
</short_description>
 
</short_description>
 
    
 
    
Line 7: Line 8:
  
 
BBGGen.JacobiStep(I,J,OO,BO,N);
 
BBGGen.JacobiStep(I,J,OO,BO,N);
BBSGen.JacobiStep(I:INTEGER,J:INTEGER,OO:LIST,BO:LIST,N:INTEGER):POLY
+
BBSGen.JacobiStep(I:INTEGER,J:INTEGER,OO:LIST,BO:LIST,N:INTEGER):LIST
 
</syntax>
 
</syntax>
 
   <description>
 
   <description>
Let R=K[x_1,...,x_N] and A_k be the generic multiplication matrix associated to x_k. Let  Tau^kl_ij be the polynomial in the (i,j) position of the  [A_k,A_l] where k,l \in {1,..,N}.  
+
Let R=K[x_1,...,x_N] and A_k be the generic multiplication matrix associated to x_k. Let  tau^kl_ij be the polynomial in the (i,j) position of the  [A_k,A_l] where k,l in {1,..,N}.  
 
    
 
    
This function computes the given (I,J) position of the Jacobi identity  J^{mkl}= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ]  where m,k,l is from {1...N}. During the computation  entries of the commutators Tau^kl_ij will be  considered as indeterminates  t[k,l,i,j] in XX.
+
This function computes the given (I,J) position of the Jacobi identity  J^mkl= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ]  where m,k,l is from {1,...,N}. During the computation  entries of the commutators tau^kl_ij will be  considered as indeterminates  t[k,l,i,j] in XX=K[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]], where Mu:=Len(OO),Nu:=Len(BO) and N is the number of indeterminates from the polynomial ring K[x_1,...,x_N].
  
  
Line 20: Line 21:
  
 
<itemize>
 
<itemize>
   <item>@param  I,J position of J^{klm}, order ideal OO, border BO, the number of  indeterminates of the polynomial ring K[x_1,...,x_N].
+
   <item>@param  I,J position of J^klm, order ideal OO, border BO, the number of  indeterminates of the polynomial ring K[x_1,...,x_N].
 
</item>
 
</item>
   <item>@return  The polynomial in the (I,J) position of the Jacobi Identity J^{ikl}.
+
   <item>@return  The list of the polynomial in the (I,J) position of the Jacobi Identity J^{ikl}.
 
</item>
 
</item>
 
</itemize>
 
</itemize>
Line 48: Line 49:
 
   </description>
 
   </description>
 
   <types>
 
   <types>
     <type>borderbasis</type>
+
     <type>bbsmingensys</type>
     <type>ideal</type>
+
     <type>list</type>
 
     <type>apcocoaserver</type>
 
     <type>apcocoaserver</type>
 
   </types>
 
   </types>
  
<see>BBSGen.JacobiFull</see>
+
<see>ApCoCoA-1:BBSGen.JacobiFull|BBSGen.JacobiFull</see>
<see>BBSGen.JacobiLin</see>
+
<see>ApCoCoA-1:BBSGen.JacobiLin|BBSGen.JacobiLin</see>
  
 
   <key>JacobiStep</key>
 
   <key>JacobiStep</key>
 
   <key>BBSGen.JacobiStep</key>
 
   <key>BBSGen.JacobiStep</key>
 
   <key>bbsmingensys.JacobiStep</key>
 
   <key>bbsmingensys.JacobiStep</key>
   <wiki-category>Package_bbsmingensys</wiki-category>
+
   <wiki-category>ApCoCoA-1:Package_bbsmingensys</wiki-category>
 
</command>
 
</command>

Latest revision as of 09:50, 7 October 2020

This article is about a function from ApCoCoA-1.

BBSGen.JacobiStep

Let R:=K[x_1,...,x_N] and let OO be an order ideal. This function computes the entry in the position (I,J) of the Jacobi identity matrix J^klm [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] where m,k,l is from {1,...,N} and I,J in {1,...,Len(OO)}.

Syntax

BBGGen.JacobiStep(I,J,OO,BO,N);
BBSGen.JacobiStep(I:INTEGER,J:INTEGER,OO:LIST,BO:LIST,N:INTEGER):LIST

Description

Let R=K[x_1,...,x_N] and A_k be the generic multiplication matrix associated to x_k. Let tau^kl_ij be the polynomial in the (i,j) position of the [A_k,A_l] where k,l in {1,..,N}.

This function computes the given (I,J) position of the Jacobi identity J^mkl= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] where m,k,l is from {1,...,N}. During the computation entries of the commutators tau^kl_ij will be considered as indeterminates t[k,l,i,j] in XX=K[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]], where Mu:=Len(OO),Nu:=Len(BO) and N is the number of indeterminates from the polynomial ring K[x_1,...,x_N].


Please note that this function does not work for the case, where N=2.


  • @param I,J position of J^klm, order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N].

  • @return The list of the polynomial in the (I,J) position of the Jacobi Identity J^{ikl}.


Example

Use R::=QQ[x[1..3]];

OO:=[1,x[1]];
BO:=$apcocoa/borderbasis.Border(OO);
Mu:=Len(OO);
Nu:=Len(BO);
N:=Len(Indets());
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 

BBSGen.JacobiStep(1,2,OO,BO,N);

[[-c[1,3]t[1,2,1,1] + c[1,1]t[1,2,1,2] - c[2,3]t[1,2,1,2] +
 c[1,3]t[1,2,2,2] - c[1,4]t[1,3,1,1] + c[1,2]t[1,3,1,2] -
 c[2,4]t[1,3,1,2] + c[1,4]t[1,3,2,2] - c[1,5]t[2,3,1,1] -
 c[2,5]t[2,3,1,2] + c[1,5]t[2,3,2,2]]]]
-----------


BBSGen.JacobiFull

BBSGen.JacobiLin