Difference between revisions of "ApCoCoA-1:BBSGen.BBFinder"

From ApCoCoAWiki
m (insert version info)
 
(22 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
{{Version|1}}
 
<command>
 
<command>
 
   <title>BBSGen.BBFinder</title>
 
   <title>BBSGen.BBFinder</title>
   <short_description>: Let  t[k,l,i,j] represent  the (i,j) ^th entry of matrix the operation [A_k,A_l] . Let LF be a list of such indeterminates from the ring XX. This function finds the polynomial \tau^kl_ij  and its degree which corresponds to the elements given in the list LF.
+
   <short_description>Let LF be a list of indeterminates from the ring K[t[k,l,i,j] that is the subset of the ring XX:=K[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]] . This function finds the defining equations of border basis scheme and their degrees that correspond to the elements of the list LF.  
 
              
 
              
 
  </short_description>
 
  </short_description>
Line 7: Line 8:
 
<syntax>
 
<syntax>
  
BBFinder(LF,OO,N,Poly);  
+
BBSGen.BBFinder(LF,OO,N,Poly);  
BBFinder(LF:LIST,OO:LIST,BO:LIST,N:INTEGER,W:MATRIX):LIST
+
BBSGen.BBFinder(LF:LIST,OO:LIST,BO:LIST,N:INTEGER,W:MATRIX):LIST
 
</syntax>
 
</syntax>
 
   <description>
 
   <description>
 
In order to use this function, one should define the ring XX as given in the example.  
 
In order to use this function, one should define the ring XX as given in the example.  
This function may not work properly for bigger order ideals and  rings with more than three indeterminates, since the ring XX
+
This function may not work properly for bigger order ideals and  rings with more than three indeterminates, since the indeterminates of the ring XX also grows rapidly with respect to them.
also grows with respect to them.
 
  
We use the function <ref>BB.Border</ref>
 
  <ref>BB.Box</ref> from the borderbasis package.
 
  
 
<itemize>
 
<itemize>
   <item>@param List of t[k,l,i,j] , order ideal OO, border BO, the number of Indeterminates of the Polynomial Ring and the Weight Matrix.
+
   <item>@param List of t[k,l,i,j] , order ideal OO, border BO, N the number of indeterminates of the polynomial ring K[x_1,...,x_N] and the Weight Matrix(see <ref>ApCoCoA-1:BBSGen.Wmat|BBSGen.Wmat</ref>).
 
</item>
 
</item>
   <item>@return List of generators of the vanishing ideal of the border basis, their position in the matrix [A_k,A_l] and their degree wrt. arrow grading.   </item>
+
   <item>@return List of generators of the vanishing ideal of the border basis, their position in the matrix [A_k,A_l] and their degree wrt. arrow grading (see  <ref>ApCoCoA-1:BBSGen.Wmat|BBSGen.Wmat</ref>).  </item>
 
</itemize>
 
</itemize>
  
 
   
 
   
 
<example>
 
<example>
 +
 +
 
Use R::=QQ[x[1..2]];
 
Use R::=QQ[x[1..2]];
  
OO:=BB.Box([1,1]);
+
OO:=$apcocoa/borderbasis.Box([1,1]);
BO:=BB.Border(OO);
+
BO:=$apcocoa/borderbasis.Border(OO);  
W:=BBSGen.Wmat(OO,BO,N);
 
 
Mu:=Len(OO);
 
Mu:=Len(OO);
 
Nu:=Len(BO);
 
Nu:=Len(BO);
 
N:=Len(Indets());
 
N:=Len(Indets());
 +
W:=BBSGen.Wmat(OO,BO,N);
 +
 
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];  
 
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];  
  
Line 44: Line 45:
 
     [  t[1,2,2,4]],
 
     [  t[1,2,2,4]],
 
     [ -c[2,1]c[2,4] + c[2,2]c[3,3] + c[2,4]c[4,3] - c[2,3]c[4,4] - c[1,4]]]]
 
     [ -c[2,1]c[2,4] + c[2,2]c[3,3] + c[2,4]c[4,3] - c[2,3]c[4,4] - c[1,4]]]]
 
+
   
  
  
Line 52: Line 53:
 
   <types>
 
   <types>
 
     <type>borderbasis</type>
 
     <type>borderbasis</type>
     <type>ideal</type>
+
     <type>list</type>
 
     <type>apcocoaserver</type>
 
     <type>apcocoaserver</type>
 
   </types>
 
   </types>
<ref>BB.Border</ref>
+
 
  <ref>BB.Box</ref>
+
  <see>ApCoCoA-1:BBSGen.Wmat|BBSGen.Wmat</see>
  <see>BBSGen.Wmat</see>
+
<see>ApCoCoA-1:BBSGen.NonTriv|BBSGen.NonTriv</see>
<see>BBSGen.BBTau</see>
+
<see>ApCoCoA-1:BBSGen.Poldeg|BBSGen.Poldeg</see>
<see>BBSGen.NonTriv</see>
+
<key>BBFinder</key>
<see>BBSGen.Poldeg</see>
+
   <key>BBSGen.BBFinder</key>
  <key>Wmat</key>
+
 
   <key>BBSGen.Wmat</key>
+
   <wiki-category>ApCoCoA-1:Package_bbsmingensys</wiki-category>
  <key>bbsmingensys.Wmat</key>
 
   <wiki-category>Package_bbsmingensys</wiki-category>
 
 
</command>
 
</command>

Latest revision as of 09:49, 7 October 2020

This article is about a function from ApCoCoA-1.

BBSGen.BBFinder

Let LF be a list of indeterminates from the ring K[t[k,l,i,j] that is the subset of the ring XX:=K[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]] . This function finds the defining equations of border basis scheme and their degrees that correspond to the elements of the list LF.


Syntax

BBSGen.BBFinder(LF,OO,N,Poly); 
BBSGen.BBFinder(LF:LIST,OO:LIST,BO:LIST,N:INTEGER,W:MATRIX):LIST

Description

In order to use this function, one should define the ring XX as given in the example.

This function may not work properly for bigger order ideals and rings with more than three indeterminates, since the indeterminates of the ring XX also grows rapidly with respect to them.


  • @param List of t[k,l,i,j] , order ideal OO, border BO, N the number of indeterminates of the polynomial ring K[x_1,...,x_N] and the Weight Matrix(see BBSGen.Wmat).

  • @return List of generators of the vanishing ideal of the border basis, their position in the matrix [A_k,A_l] and their degree wrt. arrow grading (see BBSGen.Wmat).


Example

Use R::=QQ[x[1..2]];

OO:=$apcocoa/borderbasis.Box([1,1]);
BO:=$apcocoa/borderbasis.Border(OO);   
Mu:=Len(OO);
Nu:=Len(BO);
N:=Len(Indets());
W:=BBSGen.Wmat(OO,BO,N);

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 

BBSGen.BBFinder([t[1,2,3,4],t[1,2,2,4]],OO,BO,N,W);

[ [   [   R :: Vector(1, 2)],
    [t[1,2,3,4]],
    [ -c[2,4]c[3,1] + c[3,2]c[3,3] + c[3,4]c[4,3] - c[3,3]c[4,4] + c[1,3]]],
  [[   R :: Vector(2, 1)],
    [  t[1,2,2,4]],
    [ -c[2,1]c[2,4] + c[2,2]c[3,3] + c[2,4]c[4,3] - c[2,3]c[4,4] - c[1,4]]]]
    




BBSGen.Wmat

BBSGen.NonTriv

BBSGen.Poldeg