Difference between revisions of "ApCoCoA-1:GLPK.L01PSolve"
(New page: <command> <title>GLPK.MIPSolve</title> <short_description>Solving linear programmes.</short_description> <syntax> GLPK.MIPSolve(Objective_f:POLY, EQ_Poly:LIST, LE_Poly:LIST, GE_Poly:LIST, ...) |
m (replaced <quotes> tag by real quotes) |
||
(9 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Version|1}} | ||
<command> | <command> | ||
− | <title>GLPK. | + | <title>GLPK.L01PSolve</title> |
− | <short_description> | + | <short_description>Solve a system of polynomial equations over <tt>F_2</tt> for one solution in <tt>F_2^n</tt>.</short_description> |
<syntax> | <syntax> | ||
− | GLPK. | + | GLPK.L01PSolve(F:LIST, CuttingNumber:INT, QStrategy:INT, CStrategy:INT, MinMax:STRING):LIST |
</syntax> | </syntax> | ||
<description> | <description> | ||
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | <em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | ||
+ | <par/> | ||
+ | This function finds one solution in <tt>F_2^n</tt> of a system of polynomial equations over the field <tt>F_2</tt>. It operates in two stages. Firstly, it models the problem of finding one solution of given polynomial system into a mixed integer linear programming problem. For this the system is first converted into an equivalent CNF form and then the CNF form is converted into a system of equalities and inequalities. Secondly, the mixed integer linear programming model is solved using glpk. | ||
+ | |||
<itemize> | <itemize> | ||
− | <item>@param <em> | + | <item>@param <em>F</em>: A List containing the polynomials of the given system.</item> |
− | + | <item>@param <em>CuttingNumber</em>: Maximal support-length of the linear polynomials for conversion to CNF. The possible value could be from 3 to 6. </item> | |
− | <item>@param <em> | + | <item>@param <em>QStrategy</em>: Strategy for quadratic substitution. 0 - Standard; 1 - Linear Partner; 2 - Double Linear Partner; 3 - Quadratic Partner;</item> |
− | + | <item>@param <em>CStrategy</em>: Strategy for cubic substitution. 0 - Standard; and 1 - Quadratic Partner;</item> | |
− | <item>@param <em> | + | <item>@param <em>MinMax</em>: Optimization direction i.e. minimization ("Min") or maximization ("Max").</item> |
− | <item>@param <em> | + | <item>@return A list containing a zero of the system F.</item> |
− | <item>@param <em> | ||
− | |||
− | <item>@return | ||
</itemize> | </itemize> | ||
<example> | <example> | ||
− | -- | + | Use Z/(2)[x[1..4]]; |
− | -- with the | + | F:=[ |
+ | x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1, | ||
+ | x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1, | ||
+ | x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1, | ||
+ | x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1 | ||
+ | ]; | ||
+ | |||
+ | CuttingNumber:=6; | ||
+ | QStrategy:=0; | ||
+ | CStrategy:=0; | ||
+ | MinMax:="Max"; | ||
+ | |||
+ | -- Then we compute the solution with | ||
+ | |||
+ | GLPK.L01PSolve(F, CuttingNumber, QStrategy, CStrategy, MinMax); | ||
+ | |||
+ | -- The result will be the following: | ||
+ | |||
+ | Converting to CNF with CuttingLength: 6, QStrategy: Standard, CStrategy: Standard. | ||
+ | Converting CNF to system of equalities and inequalities... | ||
+ | Model is ready to solve with GLPK... | ||
+ | Solution Status: INTEGER OPTIMAL | ||
+ | Value of objective function: 2 | ||
+ | [0, 1, 0, 1] | ||
+ | ------------------------------- | ||
+ | </example> | ||
+ | |||
+ | |||
+ | <example> | ||
+ | Use S::=Z/(2)[x[1..5]]; | ||
+ | F:=[ | ||
+ | x[1]x[5] + x[3]x[5] + x[4]x[5] + x[1] + x[4], | ||
+ | x[1]x[2] + x[1]x[4] + x[3]x[4] + x[1]x[5] + x[2]x[5] + x[3]x[5] + x[1] + x[4] + x[5] + 1, | ||
+ | x[1]x[2] + x[4]x[5] + x[1] + x[2] + x[4], | ||
+ | x[1]x[4] + x[3]x[4] + x[2]x[5] + x[1] + x[2] + x[4] + x[5] + 1, | ||
+ | x[1]x[4] + x[2]x[4] + x[3]x[4] + x[2]x[5] + x[4]x[5] + x[1] + x[2] + x[4] + x[5] | ||
+ | ]; | ||
+ | |||
+ | CuttingNumber:=6; | ||
+ | QStrategy:=1; | ||
+ | CStrategy:=0; | ||
+ | MinMax:="Max"; | ||
+ | |||
+ | -- Then we compute the solution with | ||
+ | |||
+ | GLPK.L01PSolve(F, CuttingNumber, QStrategy, CStrategy, MinMax); | ||
+ | |||
+ | -- The result will be the following: | ||
+ | |||
+ | Converting to CNF with CuttingLength: 6, QStrategy: LinearPartner, CStrategy: Standard. | ||
+ | Converting CNF to system of equalities and inequalities... | ||
+ | Model is ready to solve with GLPK... | ||
+ | Solution Status: INTEGER OPTIMAL | ||
+ | Value of objective function: 4 | ||
+ | [1, 1, 1, 1, 0] | ||
+ | ------------------------------- | ||
+ | </example> | ||
+ | |||
+ | <example> | ||
+ | Use ZZ/(2)[x[1..3]]; | ||
+ | F := [ x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[3] +1, | ||
+ | x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[2], | ||
+ | x[1]x[2] + x[2]x[3] + x[2] | ||
+ | ]; | ||
− | + | CuttingNumber:=5; | |
− | + | QStrategy:=0; | |
− | + | CStrategy:=1; | |
− | + | MinMax:="Max"; | |
− | |||
− | |||
− | |||
-- Then we compute the solution with | -- Then we compute the solution with | ||
− | |||
+ | GLPK.L01PSolve(F, CuttingNumber, QStrategy, CStrategy, MinMax); | ||
− | -- | + | -- The result will be the following: |
+ | |||
+ | Converting to CNF with CuttingLength: 5, QStrategy: Standard, CStrategy: CubicParnterDegree2. | ||
+ | Converting CNF to system of equalities and inequalities... | ||
+ | Model is ready to solve with GLPK... | ||
Solution Status: INTEGER OPTIMAL | Solution Status: INTEGER OPTIMAL | ||
− | Value of objective function: | + | Value of objective function: 1 |
− | [ | + | [0, 0, 1] |
+ | ------------------------------- | ||
</example> | </example> | ||
+ | |||
</description> | </description> | ||
Line 46: | Line 113: | ||
<type>apcocoaserver</type> | <type>apcocoaserver</type> | ||
<type>linear_programs</type> | <type>linear_programs</type> | ||
+ | <type>poly_system</type> | ||
</types> | </types> | ||
− | <key> | + | <key>l01psolve</key> |
<key>solve linear programm</key> | <key>solve linear programm</key> | ||
<key>solve lp</key> | <key>solve lp</key> | ||
− | <key>GLPK. | + | <key>GLPK.l01pSolve</key> |
− | <wiki-category>Package_glpk</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_glpk</wiki-category> |
</command> | </command> |
Latest revision as of 13:31, 29 October 2020
This article is about a function from ApCoCoA-1. |
GLPK.L01PSolve
Solve a system of polynomial equations over F_2 for one solution in F_2^n.
Syntax
GLPK.L01PSolve(F:LIST, CuttingNumber:INT, QStrategy:INT, CStrategy:INT, MinMax:STRING):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This function finds one solution in F_2^n of a system of polynomial equations over the field F_2. It operates in two stages. Firstly, it models the problem of finding one solution of given polynomial system into a mixed integer linear programming problem. For this the system is first converted into an equivalent CNF form and then the CNF form is converted into a system of equalities and inequalities. Secondly, the mixed integer linear programming model is solved using glpk.
@param F: A List containing the polynomials of the given system.
@param CuttingNumber: Maximal support-length of the linear polynomials for conversion to CNF. The possible value could be from 3 to 6.
@param QStrategy: Strategy for quadratic substitution. 0 - Standard; 1 - Linear Partner; 2 - Double Linear Partner; 3 - Quadratic Partner;
@param CStrategy: Strategy for cubic substitution. 0 - Standard; and 1 - Quadratic Partner;
@param MinMax: Optimization direction i.e. minimization ("Min") or maximization ("Max").
@return A list containing a zero of the system F.
Example
Use Z/(2)[x[1..4]]; F:=[ x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1, x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1 ]; CuttingNumber:=6; QStrategy:=0; CStrategy:=0; MinMax:="Max"; -- Then we compute the solution with GLPK.L01PSolve(F, CuttingNumber, QStrategy, CStrategy, MinMax); -- The result will be the following: Converting to CNF with CuttingLength: 6, QStrategy: Standard, CStrategy: Standard. Converting CNF to system of equalities and inequalities... Model is ready to solve with GLPK... Solution Status: INTEGER OPTIMAL Value of objective function: 2 [0, 1, 0, 1] -------------------------------
Example
Use S::=Z/(2)[x[1..5]]; F:=[ x[1]x[5] + x[3]x[5] + x[4]x[5] + x[1] + x[4], x[1]x[2] + x[1]x[4] + x[3]x[4] + x[1]x[5] + x[2]x[5] + x[3]x[5] + x[1] + x[4] + x[5] + 1, x[1]x[2] + x[4]x[5] + x[1] + x[2] + x[4], x[1]x[4] + x[3]x[4] + x[2]x[5] + x[1] + x[2] + x[4] + x[5] + 1, x[1]x[4] + x[2]x[4] + x[3]x[4] + x[2]x[5] + x[4]x[5] + x[1] + x[2] + x[4] + x[5] ]; CuttingNumber:=6; QStrategy:=1; CStrategy:=0; MinMax:="Max"; -- Then we compute the solution with GLPK.L01PSolve(F, CuttingNumber, QStrategy, CStrategy, MinMax); -- The result will be the following: Converting to CNF with CuttingLength: 6, QStrategy: LinearPartner, CStrategy: Standard. Converting CNF to system of equalities and inequalities... Model is ready to solve with GLPK... Solution Status: INTEGER OPTIMAL Value of objective function: 4 [1, 1, 1, 1, 0] -------------------------------
Example
Use ZZ/(2)[x[1..3]]; F := [ x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[3] +1, x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[2], x[1]x[2] + x[2]x[3] + x[2] ]; CuttingNumber:=5; QStrategy:=0; CStrategy:=1; MinMax:="Max"; -- Then we compute the solution with GLPK.L01PSolve(F, CuttingNumber, QStrategy, CStrategy, MinMax); -- The result will be the following: Converting to CNF with CuttingLength: 5, QStrategy: Standard, CStrategy: CubicParnterDegree2. Converting CNF to system of equalities and inequalities... Model is ready to solve with GLPK... Solution Status: INTEGER OPTIMAL Value of objective function: 1 [0, 0, 1] -------------------------------