Difference between revisions of "ApCoCoA-1:SB.Sagbi"

From ApCoCoAWiki
(New page: <command> <title>SB.Sagbi</title> <short_description>Computes a finite SAGBI-basis of a subalgebra if existing.</short_description> <syntax> SB.Sagbi(G:LIST of POLY):LIST of POLY </...)
 
(added version info)
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
{{Version|1|[[Package sagbi/SB.SAGBI]]}}
 
<command>
 
<command>
 
   <title>SB.Sagbi</title>
 
   <title>SB.Sagbi</title>
Line 59: Line 60:
 
-- indeed a SAGBI-basis.
 
-- indeed a SAGBI-basis.
 
TRUE
 
TRUE
 +
-------------------------------
 +
-- Done.
 +
-------------------------------
 +
</example>
 +
<example>
 +
Use R::=QQ[x,y];
 +
 +
G:=[x+y, xy, xy^2];
 +
SB.Sagbi(G);
 +
 +
-------------------------------------------------------
 +
-- output:
 +
 +
--- Computation was interrupted ---
 +
NULL
 
-------------------------------
 
-------------------------------
 
-- Done.
 
-- Done.
Line 64: Line 80:
 
</example>
 
</example>
 
   </description>
 
   </description>
<see>SB.IsSagbi</see>
+
<seealso>
<see>SB.IsSagbiOf</see>
+
<see>ApCoCoA-1:SB.IsSagbi|SB.IsSagbi</see>
 +
<see>ApCoCoA-1:SB.IsSagbiOf|SB.IsSagbiOf</see>
 +
</seealso>
 
   <types>
 
   <types>
 
     <type>sagbi</type>
 
     <type>sagbi</type>
Line 73: Line 91:
 
   <key>sb.sagbi</key>
 
   <key>sb.sagbi</key>
 
   <key>sagbi.sagbi</key>
 
   <key>sagbi.sagbi</key>
   <wiki-category>Package_sagbi</wiki-category>
+
   <wiki-category>ApCoCoA-1:Package_sagbi</wiki-category>
 
</command>
 
</command>

Latest revision as of 18:06, 27 October 2020

This article is about a function from ApCoCoA-1. If you are looking for the ApCoCoA-2 version of it, see Package sagbi/SB.SAGBI.

SB.Sagbi

Computes a finite SAGBI-basis of a subalgebra if existing.

Syntax

SB.Sagbi(G:LIST of POLY):LIST of POLY

Description

This function computes a finite SAGBI-basis of a subalgebra S generated by the polynomials of the list G, if a finite SAGBI-basis of S is existing. Then a list of polynomials is returned which form a SAGBI-basis of S. Otherwise the computation will be interrupted after a reasonable time, i.e. it seems that there is no finite SAGBI-basis, and NULL will be returned.

  • @param G A list of polynomials which generates a subalgebra.

  • @return Either a list of polynomials which form a finite SAGBI-basis of the subalgebra generated by G or NULL, if no finite SAGBI-basis is existing.

Example

Use R::=QQ[x,y];

G:=[x-y,x+y];
SB.IsSagbi(G);
SB.Sagbi(G);

-------------------------------------------------------
-- output:

FALSE
-------------------------------

-- The result is correct, because a SAGBI-basis of G is the following:
[
  x - y,
  x + y,
  y]
-------------------------------
-- Done.
-------------------------------

Example

Use R::=QQ[x[1..6]];

Generators:=[-x[4] - x[6], -x[1], x[2]^2 + x[3]^2, 
    -4x[4]^2 - 5/2x[5]^2 + 2x[4]x[6] - 4x[6]^2, 
    -2x[2]x[3]x[4] + x[2]^2x[5] - x[3]^2x[5] + 2x[2]x[3]x[6], 
    -x[2]^2x[4] + x[3]^2x[4] - 2x[2]x[3]x[5] + x[2]^2x[6] - x[3]^2x[6]];

SB.IsSagbi(Generators);

-- Computation of a SAGBI-basis
Basis:=SB.Sagbi(Generators);
SB.IsSagbi(Basis);

-------------------------------------------------------
-- output:

FALSE
-------------------------------

-- Of course the test passes now because the computed SAGBI-basis is
-- indeed a SAGBI-basis.
TRUE
-------------------------------
-- Done.
-------------------------------

Example

Use R::=QQ[x,y];

G:=[x+y, xy, xy^2];
SB.Sagbi(G);

-------------------------------------------------------
-- output:

--- Computation was interrupted ---
NULL
-------------------------------
-- Done.
-------------------------------

See also

SB.IsSagbi

SB.IsSagbiOf