Difference between revisions of "ApCoCoA-1:Weyl.WStandardForm"
From ApCoCoAWiki
Line 8: | Line 8: | ||
<itemize> | <itemize> | ||
<item>@param <em>L</em> A list of lists where each list represents a monomial of a Weyl polynomial.</item> | <item>@param <em>L</em> A list of lists where each list represents a monomial of a Weyl polynomial.</item> | ||
− | <item>@result The result is a Weyl polynomial in | + | <item>@result The result is a Weyl polynomial in normal form.</item> |
</itemize> | </itemize> | ||
Revision as of 13:36, 10 July 2009
Weyl.WNormalForm
Computes the Normal form of a Weyl polynomial.
Syntax
Weyl.WNormalForm(L:List):POLY
Description
@param L A list of lists where each list represents a monomial of a Weyl polynomial.
@result The result is a Weyl polynomial in normal form.
Example
A2::=QQ[x[1..2],y[1..2]]; --Define appropriate ring Use A2; L:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3],[5]]; Weyl.WNormalForm(L); ------------------------------- -9x[1]^2x[2]^3y[2] - 27x[1]^2x[2]^2 + 2x[1]x[2]^2y[1] + 5 -------------------------------
Example
W3::=ZZ/(7)[x[1..3],d[1..3]]; Use W3; L2:=[[2d[1],d[2],d[3]],[3x[1],d[2],x[2]],[3d[3]^4,x[2]^3,x[3]^5],[5d[1]^3,x[1]^4],[3]]; Weyl.WNormalForm(L2); 3x[2]^3x[3]^5d[3]^4 - 3x[2]^3x[3]^4d[3]^3 + 3x[2]^3x[3]^3d[3]^2 - 2x[1]^4d[1]^3 - x[2]^3x[3]^2d[3] - 3x[1]^3d[1]^2 + 3x[2]^3x[3] - 2x[1]^2d[1] + 3x[1]x[2]d[2] + 2d[1]d[2]d[3] - 3x[1] + 3 -------------------------------