Difference between revisions of "ApCoCoA-1:Weyl.WMulByMonom"
From ApCoCoAWiki
Line 1: | Line 1: | ||
<command> | <command> | ||
<title>Weyl.WMulByMonom</title> | <title>Weyl.WMulByMonom</title> | ||
− | <short_description>Computes the product M*F of Weyl monomial M and a Weyl polynomial F in normal form.</short_description> | + | <short_description>Computes the product <tt>M*F</tt> of a Weyl monomial <tt>M</tt> and a Weyl polynomial <tt>F</tt> in normal form.</short_description> |
<syntax> | <syntax> | ||
Weyl.WMulByMonom(M:POLY,F:POLY):POLY | Weyl.WMulByMonom(M:POLY,F:POLY):POLY | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | This function multiplies a Weyl monomial M with a polynomial F and returns M*F as a Weyl polynomial in normal form. | + | This function multiplies a Weyl monomial <tt>M</tt> with a polynomial <tt>F</tt> and returns <tt>M*F</tt> as a Weyl polynomial in normal form. |
<itemize> | <itemize> | ||
<item>@param <em>M</em> A Weyl monomial.</item> | <item>@param <em>M</em> A Weyl monomial.</item> | ||
<item>@param <em>F</em> A Weyl polynomial.</item> | <item>@param <em>F</em> A Weyl polynomial.</item> | ||
− | <item>@return The product M*F, a Weyl polynomial in normal form.</item> | + | <item>@return The product <tt>M*F</tt>, a Weyl polynomial in normal form.</item> |
</itemize> | </itemize> | ||
Revision as of 13:33, 10 July 2009
Weyl.WMulByMonom
Computes the product M*F of a Weyl monomial M and a Weyl polynomial F in normal form.
Syntax
Weyl.WMulByMonom(M:POLY,F:POLY):POLY
Description
This function multiplies a Weyl monomial M with a polynomial F and returns M*F as a Weyl polynomial in normal form.
@param M A Weyl monomial.
@param F A Weyl polynomial.
@return The product M*F, a Weyl polynomial in normal form.
Note: Monomials and polynomials that are not in normal form should be first converted into normal form using Weyl.WNormalForm, otherwise you may get unexpected results.
Example
A1::=QQ[x,d]; --Define appropriate ring Use A1; M:=x^3d^4; F:=x^3+d^3+3xd+5; Weyl.WMulByMonom(M,F); x^6d^4 + x^3d^7 + 3x^4d^5 + 12x^5d^3 + 17x^3d^4 + 36x^4d^2 + 24x^3d ------------------------------- Weyl.WMulByMonom(F,M); -- note the input ERROR: 1st parameter should be a Monomial! CONTEXT: Error(<quotes>1st parameter should be a Monomial!</quotes>) -------------------------------
See also