Difference between revisions of "Category:ApCoCoA-1:Package gbmr"
From ApCoCoAWiki
Line 1: | Line 1: | ||
Package gbmr is designed to compute Groebner bases in monoid rings. | Package gbmr is designed to compute Groebner bases in monoid rings. | ||
− | For the field of rationals <math>\mathbb{Q}</math> | + | For the field of rationals <math>\mathbb{Q}</math> and a monoid <math>\mathcal{M}</math> presented by a string rewriting system, let <math>\mathbb{Q}[\mathcal{M}]</math> denote the ring of all finite formal sums (called polynomials) <math>\sum^{n}_{i=1}a_{i}\cdot w_{i}</math> with coefficients <math>a_{i}\in\mathbb{Q}\setminus\{0\}</math> and terms <math>w_{i}\in\mathcal{M}</math>. This ring is called the monoid ring of <math>\mathcal{M}</math> over <math>\mathcal{Q}</math> . |
Revision as of 08:56, 9 July 2009
Package gbmr is designed to compute Groebner bases in monoid rings.
For the field of rationals and a monoid presented by a string rewriting system, let denote the ring of all finite formal sums (called polynomials) with coefficients and terms . This ring is called the monoid ring of over .
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
Pages in category "ApCoCoA-1:Package gbmr"
The following 59 pages are in this category, out of 59 total.
N
- ApCoCoA-1:NCo.Add
- ApCoCoA-1:NCo.AdMatrix
- ApCoCoA-1:NCo.BAdd
- ApCoCoA-1:NCo.BDeg
- ApCoCoA-1:NCo.BGB
- ApCoCoA-1:NCo.BHF
- ApCoCoA-1:NCo.BInterreduction
- ApCoCoA-1:NCo.BIsGB
- ApCoCoA-1:NCo.BLC
- ApCoCoA-1:NCo.BLW
- ApCoCoA-1:NCo.BMB
- ApCoCoA-1:NCo.BMultiply
- ApCoCoA-1:NCo.BNR
- ApCoCoA-1:NCo.BReducedGB
- ApCoCoA-1:NCo.BSubtract
- ApCoCoA-1:NCo.BTruncatedGB
- ApCoCoA-1:NCo.Deg
- ApCoCoA-1:NCo.FindPolynomials
- ApCoCoA-1:NCo.GB
- ApCoCoA-1:NCo.HF
- ApCoCoA-1:NCo.Interreduction
- ApCoCoA-1:NCo.Intersection
- ApCoCoA-1:NCo.IsFinite
- ApCoCoA-1:NCo.IsGB
- ApCoCoA-1:NCo.IsHomog
- ApCoCoA-1:NCo.KernelOfHomomorphism
- ApCoCoA-1:NCo.LC
- ApCoCoA-1:NCo.LW
- ApCoCoA-1:NCo.LWIdeal
- ApCoCoA-1:NCo.MB
- ApCoCoA-1:NCo.MRAdd
- ApCoCoA-1:NCo.MRDeg
- ApCoCoA-1:NCo.MRGB
- ApCoCoA-1:NCo.MRHF
- ApCoCoA-1:NCo.MRInterreduction
- ApCoCoA-1:NCo.MRIsGB
- ApCoCoA-1:NCo.MRLC
- ApCoCoA-1:NCo.MRLW
- ApCoCoA-1:NCo.MRMB
- ApCoCoA-1:NCo.MRMultiply
- ApCoCoA-1:NCo.MRNR
- ApCoCoA-1:NCo.MRReducedGB
- ApCoCoA-1:NCo.MRSubtract
- ApCoCoA-1:NCo.Multiply
- ApCoCoA-1:NCo.NR
- ApCoCoA-1:NCo.PrefixGB
- ApCoCoA-1:NCo.PrefixInterreduction
- ApCoCoA-1:NCo.PrefixNR
- ApCoCoA-1:NCo.PrefixReducedGB
- ApCoCoA-1:NCo.PrefixSaturation
- ApCoCoA-1:NCo.ReducedGB
- ApCoCoA-1:NCo.SetFp
- ApCoCoA-1:NCo.SetOrdering
- ApCoCoA-1:NCo.SetRelations
- ApCoCoA-1:NCo.SetX
- ApCoCoA-1:NCo.Subtract
- ApCoCoA-1:NCo.TruncatedGB
- ApCoCoA-1:NCo.UnsetFp
- ApCoCoA-1:NCo.UnsetRelations