Difference between revisions of "ApCoCoA-1:BB.NDgens"

From ApCoCoAWiki
Line 4: Line 4:
 
    
 
    
 
<syntax>
 
<syntax>
BB.NDgens(K:INT,OO:LIST):LIST
+
BB.NDgens(K:INT,OO:LIST):LIST of POLY
 
</syntax>
 
</syntax>
 
   <description>
 
   <description>
Computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of <ref>BB.NDneighbors</ref>(OO). The inputs are an integer K in the range 1..<ref>Len</ref>(<ref>BB.NDneighbors</ref>(OO)) and a list OO of terms that specify an order ideal. The output is a list of polynomials in the ring BBS=K[c_{ij}].
+
This command computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the <tt>K</tt>-th element of <ref>BB.NDneighbors</ref>(OO).
 
<itemize>
 
<itemize>
   <item>@param <em>K</em> The generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by <ref>BB.NDneighbors</ref>(OO) will be computed.</item>
+
   <item>@param <em>K</em> An integer in the range 1..<ref>Len</ref>(<ref>BB.NDneighbors</ref>(OO)).</item>
 
   <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
 
   <item>@param <em>OO</em> A list of terms representing an order ideal.</item>
   <item>@return A list of generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by <ref>BB.NDneighbors</ref>(OO). The polynomials will belong to the ring BBS=K[c_{ij}].</item>
+
   <item>@return A list of generators of the vanishing ideal. The polynomials will belong to the ring <tt>BBS=K[c_{ij}]</tt>.</item>
 
</itemize>
 
</itemize>
 
<example>
 
<example>

Revision as of 15:49, 8 July 2009

BB.NDgens

Computes the generators of the vanishing ideal of a border basis scheme.

Syntax

BB.NDgens(K:INT,OO:LIST):LIST of POLY

Description

This command computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of BB.NDneighbors(OO).

  • @param K An integer in the range 1..Len(BB.NDneighbors(OO)).

  • @param OO A list of terms representing an order ideal.

  • @return A list of generators of the vanishing ideal. The polynomials will belong to the ring BBS=K[c_{ij}].

Example

Use QQ[x,y,z];
BB.NDgens(1, [1,x]);
[BBS :: c[1,5]c[2,1] - c[1,3], BBS :: c[2,1]c[2,5] + c[1,1] - c[2,3]]
-------------------------------


BB.ASgens

BB.HomASgens

BB.HomNDgens